Skip to main content
Book cover

Mycorrhiza pp 507–528Cite as

Intertwined Existence: The Life of Plant Symbiotic Fungi in Agricultural Soils

  • Chapter

The impoverishment of cultivated soils in some countries and nutrient seepage from cultivated lands in others, coupled to the ever increasing demand for food, fiber and fuel, makes it urgent to improve the nutrient use efficiency of crops. Recognition of the intertwined existence of plants and symbiotic fungi would open the possibility of a more sustainable future. Crop management can have a large impact on the effectiveness of the arbuscular mycorrhizal (AM) symbiosis. Soil nutrient imbalance and excessive or too low soil fertility limit AM development. Soil fertility problems can be addressed by the careful selection of fertilizer materials, rates, and modes of application. Soil tillage disrupts AM hyphal networks with impact on crop nutrient uptake, but also on the biodiversity of the AM fungal community. Different growth habits found in the Glomeromycota makes certain groups more vulnerable to the negative effect of tillage. Pesticide use may also impact the AM fungi associated to crop plants through their effect on target organisms interacting with them, or through modification in the physiology of the host plant. The effect of herbicides, fungicides and insecticides are not always negative, indicating that pest control does not necessarily inhibit AM fungi contribution to crop production. The choice of crop sequence including host and non-host plants affects the development, activity and diversity of AM fungi. Forage plants are typically low input, perennial crops that maintain important relationships with AM fungi and dark septate endophytes (DSE). These fungi can improve plant capture of nitrogen and phosphorus, among other effects. These adaptive transient symbioses increase the fitness of host plants in particular times and soil depths. During their co-evolution plants, and AM fungi have developed a chemical language allowing mutual recognition. Signal molecules and AM inoculants are additional options for the management of the AM symbiosis and to improve the nutrient use efficiency of host crops.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abiven S, Menasseri S, Angers DA, Leterme P (2007) Dynamics of aggregate stability and biological binding agents during decomposition of organic materials. Eur J Soil Sci 58:239-247

    CAS  Google Scholar 

  • Addy HD, Boswell EP, Koide RT (1998) Low temperature acclimation and freezing resistance of extraradical VA mycorrhizal hyphae. Mycol Res 102:582-586

    Google Scholar 

  • Albuquerque JA, Mafra AL, Fontoura SMV, Bayer C, dos Passos JFM (2005) Avaliaçao de sistemas de preparo e calagem em um latossolo bruno aluminico. R Bras Ci Solo 29:963-975

    CAS  Google Scholar 

  • Al-Karaki G N and Clark R B (1999) Mycorrhizal influence on protein and lipid of durum wheat grown at different soil phosphorus levels. Mycorrhiza 9:97

    CAS  Google Scholar 

  • Allen EB, West NE (1993) Nontarget effects of the herbicide tebuthiuron on mycorrhizal fungi in sagebrush semidesert. Mycorrhiza 3:75-78

    CAS  Google Scholar 

  • Allen MF, Smith WK, Moore TS Jr, Christensen M (1981) Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal Bouteloua gracilis H. B. K. Lag Ex Steud. New Phytol 88:683-693

    Google Scholar 

  • Allison VJ, Miller RM, Jastrow JD, Matamala R, Zak DR (2005) Changes in soil microbial community structure in a tallgrass prairie chronosequence. Soil Sci Soc Am J 69:1412-1421

    CAS  Google Scholar 

  • Allison VJ, Yermakov Z, Miller RM, Jastrow JD, Matamala R (2007) Using landscape and depth gradients to decouple the impact of correlated environmental variables on soil microbial community composition. Soil Biol Biochem 39:505-516

    CAS  Google Scholar 

  • Antunes PM, Deaville D, Goss MJ (2006a) Effect of two AMF life strategies on the tripartite symbiosis with Bradyrhizobium japonicum and soybean. Mycorrhiza 16:167-173

    PubMed  Google Scholar 

  • Antunes PM, Rajcan I, Goss MJ (2006b) Specific flavonoids as interconnecting signals in the tripartite symbiosis formed by arbuscular mycorrhizal fungi, Bradyrhizobium japonicum (Kirchner) Jordan and soybean (Glycine max (L.) Merr.). Soil Biol Biochem 38:533-543

    CAS  Google Scholar 

  • Azcon R, Gomez-Ortega M, Barea JM (1982) Comparative effects of foliar-or soil-applied nitrate on vesicular-arbuscular mycorrhizal infection in maize. New Phytol 92:553-559

    Google Scholar 

  • Baath E, Spokes J (1989) The effect of added nitrogen and phosphorus on mycorrhizal growth response and infection in Allium schoenoprasum. Can J Bot 67:3227-3232

    Google Scholar 

  • Babana AH, Antoun H (2005) Biological system for improving the availability of Tilemsi phosphate rock for wheat (Triticum aestivum L.) cultivated in Mali. Nutri Cycl Agroecosyst 72:147-157

    Google Scholar 

  • Babana AH, Antoun H (2006) Effect of Tilemsi phosphate rock-solubilizing microorganisms on phosphorus uptake and yield of field-grown wheat (Triticum aestivum L.) in Mali. Plant Soil 287:51-58

    CAS  Google Scholar 

  • Balser TC, Treseder KK, Ekenler M (2005) Using lipid analysis and hyphal length to quantify AM and saprotrophic fungal abundance along a soil chronosequence. Soil Biol Biochem 37:601-604

    CAS  Google Scholar 

  • Baltruschat H (1985) Auftretan der VA-mycorrhiza in Abhangigkeit verschiedener Herbizidbehandlungen und der Intensitat der stickstoffdungung. VDLUFA-Schriftenreihe. 16:403-412

    Google Scholar 

  • Bardgett RD, Streeter TC, Bol R (2003) Soil microbes compete effectively with plants for organic-nitrogen inputs to temperate grasslands. Ecology 84:1277-1287

    Google Scholar 

  • Barrow, J.R (2003) Atypical morphology of dark septate fungal root endophytes of Bouteloua in arid southwestern USA rangelands. Mycorrhiza 13:239-247

    CAS  PubMed  Google Scholar 

  • Baumgartner K, Smith RF, Bettiga, L (2005) Weed control and cover crop management affect mycorrhizal colonization of grapevine roots and arbuscular mycorrhizal fungal spore populations in a California vineyard. Mycorrhiza 15:111-119

    CAS  PubMed  Google Scholar 

  • Bethlenfalvay GL, Ames RN (1987) Comparison of two methods for quantifying extraradical mycelium of vesicular-arbuscular mycorrhizal fungi. Soil Sci Soc Am J 51:834-837

    Article  Google Scholar 

  • Bethlenfalvay GJ, Mihara KL, Schreiner RP, McDaniel H (1996) Mycorrhizae, biocides, and biocontrol. 1. Herbicide-mycorrhiza interactions in soybean and cocklebur treated with bentazon. Appl Soil Ecol 3:197-204

    Google Scholar 

  • Bianciotto V, Genre A, Jargeat P, Lumini E, Becard G, Bonfante P (2004) Vertical transmission of endobacteria in the arbuscular mycorrhizal fungus Gigaspora margarita through generation of vegetative spores. Appl Environ Microbiol 70:3600-3608

    CAS  PubMed  Google Scholar 

  • Biermann B, Linderman RG (1983) Use of vesicular-arbuscular mycorrhizal roots, intraradical vesicles and extraradical vesicles as inoculum. New Phytol 95:97-105

    Google Scholar 

  • Bittman S, Kowalenko CG, Hunt DE, Forge TA, Wu X (2006) Starter phosphorus and broadcast nutrients on corn with contrasting colonization by mycorrhizae. Agron J 98:394-401

    Google Scholar 

  • Blanco-Canqui H, Lal R (2004) Mechanisms of carbon sequestration in soil aggregates. Crit Rev Plant Sci 23:481-504

    CAS  Google Scholar 

  • Blanke V, Renker C, Wagner M, Fullner K, Held M, Kuhn AJ, Buscot F (2005) Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphate-polluted field site. New Phytol 166:981-992

    CAS  PubMed  Google Scholar 

  • Bolan NS, Robson AD, Barrow NJ (1984) Increasing phosphorus supply can increase the infection of plant roots by vesicular-arbuscular mycorrhizal fungi. Soil Biol Biochem 16:419

    CAS  Google Scholar 

  • Borie F, Rubio R, Rouanet JL, Morales A, Borie G, Rojas C (2006) Effects of tillage systems on soil characteristics, glomalin and mycorrhizal propagules in a Chilean Ultisol. Soil Till Res 88:253-261

    Google Scholar 

  • Boswell EP, Koide RT, Shumway DL, Addy HD (1998) Winter wheat cover cropping, VA mycorrhizal fungi and maize growth and yield. Agric Ecosyst Environ 67:55-65

    Google Scholar 

  • Brady NC, Weil RR (2001) The nature and properties of soils, 13 edn. Prentice Hall, Upper Saddle River, N.J.

    Google Scholar 

  • Bruce A, Smith SE, Tester, M (1994) The development of mycorrhizal infection in cucumber: effects of P supply on root growth, formation of entry points and growth of infection units. New Phytol 127:507-514

    Google Scholar 

  • Brundrett M (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79:473-495

    PubMed  Google Scholar 

  • Castillo C, Rubio R, Jouanet JL, Borie F (2006) Early effects of tillage and crop rotation on arbuscular mycorrhizal fungal propagules in an Ultisol. Biol Fertil Soils 43:83-92

    Google Scholar 

  • Changjin D, Bin Z (2004) Impact of herbicides on infection and hyphal enzyme activity on AM fungus. Acta Pedol Sinica 41:750-755

    Google Scholar 

  • Corkidi L, Rowland DL, Johnson NC, Allen EB (2002) Nitrogen fertilization alters the functioning of arbuscular mycorrhizas at two semiarid grasslands. Plant Soil 240:299-310

    CAS  Google Scholar 

  • Covacevich F, Echeverria HE, Aguirrezabal LAN (2007) Soil available phosphorus status determines indigenous mycorrhizal colonization of field and glasshouse-grown spring wheat from Argentina. Appl Soil Ecol 35:1-9

    Google Scholar 

  • Craine JM, Wedin DA, Chapin FS, Reich PB (2003) Relationship between the structure of root systems and resource use for 11 North American grassland plants. Plant Ecol 165:85-100

    Google Scholar 

  • Daniell TJ, Husband R, Fitter AH, Young JPW (2001) Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol Ecol 36:203-209

    CAS  PubMed  Google Scholar 

  • de la Providencia IE, de Souza FA, Fernandez F, Delmas NS, Declerck S (2005) Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups. New Phytol 165:261-271

    PubMed  Google Scholar 

  • de Souza FA, Declerck S (2003) Mycelium development and architecture, and spore production of Scutellospora reticulata in monoxenic culture with Ri T-DNA transformed carrot roots. Mycologia 95:1004-1012

    Google Scholar 

  • Diedhiou PM, Oerke EC, Dehne HW (2004) Effects of the strobilurin fungicides azoxystrobin and kresoxim-methyl on arbuscular mycorrhiza. J Plant Dis Prot 111:545-556

    CAS  Google Scholar 

  • Douds DD, Glaves L, Janke RR (1995) Effects of tillage and farming system upon populations and distribution of vesicular-arbuscular mycorrhizal fungi. Agric Ecosys Environ 52:111-118

    Google Scholar 

  • Douds Jr DD, Millner PD (1999) Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. Agric Ecosyst Environ 74:77-93

    Google Scholar 

  • Duponnois R, Plenchette C, Thioulouse J, Cadet P (2001) The mycorrhizal soil infectivity and arbuscular mycorrhizal fungal spore communities in soils of different aged fallows in Senegal. Appl Soil Ecol 17:239-251

    Google Scholar 

  • Egerton-Warburton L M, Allen E B (2000) Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol Appl 10:484-496

    Google Scholar 

  • Eom A H, Wilson G W T, Hartnett D C (2001) Effects of ungulate grazers on arbuscular mycorrhizal symbiosis and fungal community structure in tallgrass prairie. Mycologia 93:233-242

    Google Scholar 

  • Fester T, Maier W, Strack D (1999) Accumulation of secondary compounds in barley and wheat roots in response to inoculation with an arbuscular mycorrhizal fungus and co-inoculation with rhizosphere bacteria. Mycorrhiza 8:241-246

    CAS  Google Scholar 

  • Fitter AH (1985) Functioning of vesicular-arbuscular mycorrhizas under field conditions. New Phytol 99:257-265

    Google Scholar 

  • Fracchia S, Mujica MT, Garcia Romera I, Garcia-Garrido JM, Martin J, Ocampo JA, Godeas A (1998) Interactions between Glomus mosseae and arbuscular mycorrhizal sporocarp-associated saprophytic fungi. Plant Soil 200:131-137

    CAS  Google Scholar 

  • Galvez L, Douds DD, Drinkwater LE, Wagoner P (2001) Effect of tillage and farming system upon VAM fungus populations and mycorrhizas and nutrient uptake of maize. Plant Soil 228:299-308

    CAS  Google Scholar 

  • Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:185-192

    PubMed  Google Scholar 

  • Gavito ME, Miller MH (1998) Changes in mycorrhiza development in maize induced by crop management practices. Plant Soil 198:185-192

    CAS  Google Scholar 

  • Genney DR, Alexander IJ, Hartley SE (2000) Exclusion of grass roots from soil organic layers by Calluna: the role of ericoid mycorrhizas. J Exp Bot 51:1117

    CAS  PubMed  Google Scholar 

  • Gianinazzi S, Trouvelot A, Gianinazzi-Pearson V (1990) Conceptual approaches for the rational use of VA endomycorrhizae in agricultrure: possibilities and limitations. Agric Ecosyst Environ 29:153-161

    Google Scholar 

  • Girvan MS, Bullimore J, Ball AS, Pretty JN, Osborn AM (2004) Responses of active bacterial and fungal communities in soils under winter wheat to different fertilizer and pesticide regimens. Appl Environ Microbiol 70:2692-2701

    CAS  PubMed  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17-35

    Google Scholar 

  • Guttay AJR (1983) The interaction of fertilizers and vesicular-arbuscualr mycorrhizae in composted plant residues. J Am Soc Hortic Sci 108:222-224

    Google Scholar 

  • Hamel C, Dalpe Y, Lapierre C, Simard RR, Smith DL (1994) Composition of the vesicular-arbuscular mycorrhizal fungi population in an old meadow as affected by pH, phosphorus and soil disturbance. Agric Ecosyst Environ 49:223-231

    Google Scholar 

  • Harinikumar KM, Bagyaraj DJ (1989) Effect of cropping sequence, fertilizers and farmyard manure on vesicular-arbuscular mycorrhizal fungi in different crops over three consecutive seasons. Biol Fertil Soils 7:173-175

    Google Scholar 

  • Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335-344

    Google Scholar 

  • Hayman DS (1982) Influence of soils and fertility on activity and survival of vesicular-arbuscular mycorrhizal fungi. Phytopathology 72:1119-1125

    Google Scholar 

  • Heinemeyer A, Fitter AH (2004) Impact of temperature on the arbuscular mycorrhizal (AM) symbiosis: growth responses of the host plant and its AM fungal partner. J Exp Bot 55:525-534

    CAS  PubMed  Google Scholar 

  • Helgason T, Daniell T J, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web? Nature 394:431-431

    CAS  PubMed  Google Scholar 

  • Hepper CM (1983) The effect of nitrate and phosphate on the vesicular-arbuscular mycorrhizal infection of lettuce. New Phytol 93:389-399

    CAS  Google Scholar 

  • Hijri I, Sykorova Z, Oehl F, Ineichen K, Mader P, Wiemken A, Redecker D (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol Ecol 15:2277-2289

    CAS  PubMed  Google Scholar 

  • Jabaji-Hare SH, Kendrick WB (1987) Response of an endomycorrhizal fungus in Allium porrum L. to different concentrations of the systemic fungicides, metalaxyl (Ridomil) and fosetyl-Al (Aliette). Soil Biol Biochem 19:95-99

    CAS  Google Scholar 

  • Jakobsen I (1994) Research approaches to study the functioning of vesicular-arbuscular mycorrhizas in the field. Plant Soil 159:141-147

    Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225-234

    CAS  PubMed  Google Scholar 

  • Jansa J, Mozafar A, Frossard E (2003) Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie 23:481-488

    CAS  Google Scholar 

  • Jastrow JD, Miller RM (1993) Neighbor influences on root morphology and mycorrhizal fungus colonization in tallgrass prairie plants. Ecology 74:561-569

    Google Scholar 

  • Jayaraman J, Kumar D (1995) VAM fungi-pathogen-fungicide interactions in gram. Indian Phytopath. 48:294-299

    CAS  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea J-M (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1-16

    Google Scholar 

  • Johnson C, Jarrell W, Menge J (1984) Influence of ammonium:nitrate ratio and solution pH on mycorrhizal infection, growth and nutrient composition of Chrysanthemum morifolium var. Circus. Plant Soil 77:151-157

    CAS  Google Scholar 

  • Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae? Ecol Appl 4:749-757

    Google Scholar 

  • Johnson NC, Pfleger FL (1992) Vesicular-arbuscular mycorrhizae and cultural stress. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. ASA, Madison, Wis.I, pp 71-100

    Google Scholar 

  • Johnson NC, Copeland PJ, Crookston RK, Pfleger FL (1992) Mycorrhizae: possible explanation for yield decline with continuous corn and soybean. Agron J 84:387-390

    Google Scholar 

  • Johnson NC, Rowland DL, Corkidi L, Egerton-Warburton LM, Allen EB (2003) Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84:1895-1908

    Google Scholar 

  • Jokela WE (1992) Effect of starter fertilizer on corn silage yields on medium and high fertility soils. J Produc Agric 5:233-137

    Google Scholar 

  • Joner JE (2000) The effect of long-term fertilization with organic or inorganic fertilizers on mycorrhiza-mediated phosphorus uptake in subterranean clover. Biol Fertil Soils 32:435-440

    Google Scholar 

  • Jumpponen A (2001) Dark septate endophytes-are they mycorrhizal? Mycorrhiza 11:207-211

    Google Scholar 

  • Jumpponen A, Johnson LC (2005) Can rDNA analyses of diverse fungal communities in soil and roots detect effects of environmental manipulations-a case study from tallgrass prairie. Mycologia 97:1177-1194

    CAS  PubMed  Google Scholar 

  • Kabir Z (2005) Tillage or no-tillage: impact on mycorrhizae. Can J Plant Sci 85:23-29

    Google Scholar 

  • Kabir Z, Koide RT (2000) The effect of dandelion or a cover crop on mycorrhiza inoculum potential, soil aggregation and yield of maize. Agric Ecosyst Environ 78:167-174

    Google Scholar 

  • Kahiluoto H, Ketoja E, Vestberg M, Saarela I (2001) Promotion of AM utilization through reduced P fertilization 2. Field studies. Plant Soil 231:65

    CAS  Google Scholar 

  • Khan AG (2005) Rote of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Medic Biol 18:355-364

    CAS  Google Scholar 

  • Kjoller R, Rosendahl S (2000) Effects of fungicides on arbuscular mycorrhizal fungi: differential responses in alkaline phosphatase activity of external and internal hyphae. Biol Fertil Soils 31:361-365

    CAS  Google Scholar 

  • Kling M, Jakobsen I (1997) Direct application of carbendazim and propiconazole at field rates to the external mycelium of three arbuscular mycorrhizal fungi species: effect on 32P transport and succinate dehydrogenase activity. Mycorrhiza 7:33-37

    CAS  Google Scholar 

  • Klironomos JN, Hart MM, Gurney JE, Moutoglis P (2001) Interspecific differences in the tolerance of arbuscular mycorrhizal fungi to freezing and drying. Can J Bot 79:1161-1166

    Google Scholar 

  • Koide RT, Li M (1990) On host regulation of the vesicular-arbuscular mycorrhizal symbiosis. New Phytol 114:59-64

    Google Scholar 

  • Koide R, Mosse B (2004) A history of research on arbuscular mycorrhiza. Mycorrhiza 14:145-163

    PubMed  Google Scholar 

  • Kumar K, Bagyaraj DJ (1999) Mass production of arbuscular mycorrhiza as influenced by some agrochemicals. Proc Nat Acad Sci India 69:61-66

    CAS  Google Scholar 

  • Lekberg Y, Koide RT (2005) Arbuscular mycorrhizal fungi, rhizobia, available soil P and nodulation of groundnut (Arachis hypogaea) in Zimbabwe. Agric Ecosyst Environ 110:143-148

    Google Scholar 

  • Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611-620

    CAS  PubMed  Google Scholar 

  • LingFei L, Yang A, ZhiWei Z (2005) Seasonality of arbuscular mycorrhizal symbiosis and dark septate endophytes in a grassland site in southwest China. FEMS Microbiol Ecol 54:367-373

    PubMed  Google Scholar 

  • Lingfei L, Zhang Y, Zhao Z-W (2007) Arbuscular mycorrhizal colonization and spore density across different land-use types in a hot and arid ecosystem, Southwest China. J Plant Nut Soil Sci 170:419-425

    Google Scholar 

  • Lipson D, Näsholm T (2001) The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128:305-316

    Google Scholar 

  • Liu A, Hamel C, Hamilton R, Smith D (2000) Mycorrhizae formation and nutrient uptake of new corn (Zea mays L.) hybrids with extreme canopy and leaf architecture as influenced by soil N and P levels. Plant and Soil 221:157

    CAS  Google Scholar 

  • Loveland P, Webb J (2003) Is there a critical level of organic matter in the agricultural soils of temperate regions: a review. Soil Till Res 70:1-18

    Google Scholar 

  • Lovera M, Cuenca G (2007) Diversity of arbuscular mycorrhizal fungi (AMF) and mycorrhizal potential of the soil from a natural and a disturbed savannah from La Gran Sabana, Venezuela. Interciencia 32:108-114

    Google Scholar 

  • Lu S, Braunberger P, Miller M (1994) Response of vesicular-arbuscular mycorrhizas of maize to various rates of P addition to different rooting zones. Plant Soil 158:119

    Google Scholar 

  • Mabood F, Gray EJ, Lee KD, Supanjani, Smith DL. (2006). Exploiting inter-organismal chemical communication for improved inoculants. Can J Plant Sci 86:951-966

    Google Scholar 

  • Mader P, Vierheilig H, Streitwolf-Engel R, Boller T, Frey B, Christie P, Wiemken A (2000) Transport of 15N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytol 146:155-161

    Google Scholar 

  • Malty JS, Siqueira JO, Moreira FMS (2006) Efeitos do glifosato sobre microrganismos simbiotroficos de soja, em meio de cultura e casa de vergetacao. Pessq Agropec Bras Brasilia 41:285-291

    Google Scholar 

  • Mandyam K, Jumpponen A (2005) Seeking the elusive function of the root-colonising dark septate endophytic fungi. Studies in Mycology 53:173-189

    Google Scholar 

  • Manlay RJ, Feller C, Swift MJ (2007) Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agric Ecosys Environ 119:217-233

    Google Scholar 

  • Marin M, Ybarra M, Fe A, Garcia-Ferriz L (2002) Effect of arbuscular mycorrhizal fungi and pesticides on Cynara cardunculus growth. Agric Food Sci Finland 11:245-251

    CAS  Google Scholar 

  • Martensson AM, Carlgren K (1994) Impact of phosphorus fertilization on VAM diaspores in two Swedish long-term field experiment. Agric Ecosys Environ 47:327-334

    Google Scholar 

  • Martinez A, Obertello M, Pardo A, Ocampo JA, Godeas A (2004) Interactions between Trichoderma pseudokoningii strains and the arbuscular mycorrhizal fungi Glomus mosseae and Gigaspora rosea. Mycorrhiza 14:79-84

    PubMed  Google Scholar 

  • McAllister CB, Garcia Romera I, Godeas A, Ocampo JA (1994) Interactions between Trichoderma koningii, Fusarium solani and Glomus mosseae: effects on plant growth, arbuscular mycorrhizas and the saprophyte inoculants. Soil Biol Biochem 26:1363-1367

    Google Scholar 

  • McGonigle TP, Miller MH (1999) Winter survival of extraradical hyphae and spores of arbuscular mycorrhizal fungi in the field. Appl Soil Ecol 12:41-50

    Google Scholar 

  • Menéndez AB, Scervino JM, Godeas AM (2001) Arbuscular mycorrhizal populations associated with natural and cultivated vegetation on a site of Buenos Aires province, Argentina. Biol Fertil Soils 33:373-381

    Google Scholar 

  • Menge JA, Johnson ELV, Minassian V (1979) Effect of heat treatment and three pesticides on the growth and reproduction of the mycorrhizal fungus Glomus fasciculatus. New Phytol 82:473-480

    CAS  Google Scholar 

  • Merryweather JW, Fitter AH (1998) Patterns of arbuscular mycorrhiza colonisation of the roots of Hyacinthoides non-scripta after disruption of soil mycelium. Mycorrhiza 8:87-91

    Google Scholar 

  • Miller AE, Bowman WD (2002) Variation in nitrogen-15 natural abundance and nitrogen uptake traits among co-occurring alpine species: do species partition by nitrogen form? Oecologia 130:609-616

    Google Scholar 

  • Miller MH (2000) Arbuscular mycorrhizae and the phosphorus nutrition of maize: a review of Guelph studies. Can J Plant Sci 80:47-52

    CAS  Google Scholar 

  • Miller MH, McGonigle TP, Addy HD (1995) Functional ecology of vesicular arbuscular mycorrhizas as influenced by phosphate fertilization and tillage in an agricultural ecosystem. Crit Rev Biotechnol 15:241-255

    Google Scholar 

  • Miller RM, Miller SP, Jastrow JD, Rivetta CB (2002) Mycorrhizal mediated feedbacks influence net carbon gain and nutrient uptake in Andropogon gerardii. New Phytol 155:149-162

    CAS  Google Scholar 

  • Miranda JCC, Harris PJ (1994) Effects of soil phosphorus on spore germination and hyphal growth of arbuscular mycorrhizal fungi. New Phytol 128:103-108

    CAS  Google Scholar 

  • Mohammad MJ, Pan WL, Kennedy AC (1998) Seasonal mycorrhizal colonization of winter wheat and its effect on wheat growth under dryland field conditions. Mycorrhiza 8:139-144

    Google Scholar 

  • Mosse B (1973) Plant growth responses to vesicular-arbuscular mycorrhiza. New Phytol 72:127-136

    Google Scholar 

  • Mujica MT, Fracchia S, Menendez A, Ocampo JA, Godeas A (1998) Influence of chlorsulfuron herbicide on arbuscular mycorrhizas and plant growth of Glycine max intercropped with the weeds Brassica campestris. Proceedings of the 2nd International Conference on Mycorrhiza, Uppsala, Sweden, pp 5-10

    Google Scholar 

  • Mullen RB, Schmidt SK, Jaeger CH (1998) Nitrogen uptake during snowmelt by the snow buttercup, Ranunculus adoneus. Arct Alp Res 30:121-125

    Google Scholar 

  • Muthukumar T, Senthilkumar M, Rajangam M, Udaiyan K (2006) Arbuscular mycorrhizal morphology and dark septate fungal associations in medicinal and aromatic plants of Western Ghats, Southern India. Mycorrhiza 17:11-24

    CAS  PubMed  Google Scholar 

  • Nagahashi G, Douds Jr DD (2000) Partial seperation of root exudates components and their effects upon the growth of germinated spores of AM fungi. Mycol Res 104:1453-1464

    Google Scholar 

  • Nagahashi G, Douds Jr DD, Abney GD (1996) Phosphorus amendment inhibits hyphal branching of the VAM fungus Gigaspora margarita directly and indirectly through its effect on root exudation. Mycorrhiza 6:403-408

    CAS  Google Scholar 

  • Nasr AA (1993) The effect of cytokinin and thidiazuron on tomato inoculated with endomycorrhiza. Mycorrhiza 3:179-182

    Google Scholar 

  • Ode DJ, Tieszen LL, Lerman JC (1980) The seasonal contribution of C3 and C4 plant species to primary production in a mixed prairie. Ecology 61:1304-1311

    Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Ris E-A, Boller T, Wiemken A (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273-283

    PubMed  Google Scholar 

  • Olsson PA, Baath E, Jakobsen I (1997) Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of fatty acid signatures. Appl Environ Microbiol 63:3531-3538

    CAS  PubMed  Google Scholar 

  • Pattison GS, Warton DL, Misman R, McGee PA (1997) Mycorrhiza 7:155-159

    Google Scholar 

  • Pinior A, Wyss U, Piché Y, Vierheilig H (1999) Plants colonized by AM fungi regulate further root colonization by AM fungi through altered root exudation. Can J Bot 77:891-897

    Google Scholar 

  • Pirozinsky KA, Dalpé Y (1992) The geological history of the Glomaceae with particular reference to mycorrhizal symbiosis. Symbiosis 7:1-36

    Google Scholar 

  • Plenchette C, Perrin R (1992) Evaluation in the greenhouse of the effects of fungicides on the development of mycorrhiza on leek and wheat. Mycorrhiza 1:59-62

    CAS  Google Scholar 

  • Plenchette C, Clermont-Dauphin C, Meynard JM, Fortin JA (2005) Management of arbuscular mycorrhizal fungi in cropping systems Can J Plant Sci 85:31-40

    Google Scholar 

  • Rao AV, Tarafdar JC, Sharma SK, Praveen-Kumaraggarwal RK (1995) Influence of cropping systems on soil biochemical properties in an arid rain-fed environment. J Arid Environ 31:237-244

    Google Scholar 

  • Ratti N, Kumar S, Verma HN, Gautam SP (2001) Improvement in bioavailability of tricalcium phosphate to Cymbopogon martinii var. motia by rhizobacteria, AMF and Azospirillum inoculation. Microbiol Res 156:145-149

    CAS  PubMed  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant / fungal symbiosis. Science 298:1581

    CAS  PubMed  Google Scholar 

  • Rejon A, Garcia-Romera I, Ocampo JA, Bethlenfalvay GJ (1997) Mycorrhizal fungi influence competition in a wheat-ryegrass association treated with the herbicide diclofop. Appl Soil Ecol 7:51-57

    Google Scholar 

  • Reynolds HL, Packer A, Bever JD, Clay K (2003) Grassroots ecology: plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology 84:2281-2291

    Google Scholar 

  • Rodriguez RJ, Redman RS, Henson JM (2004) The role of fungal symbioses in the adaptation of plants to high stress environments. Mitigation Adaptation Strategies Global Change 9:261-272

    Google Scholar 

  • Ruotsalainen AL, Kytöviita MM (2004) Mycorrhiza does not alter low temperature impact on Gnaphalium norvegicum. Oecologia 140:226-233

    PubMed  Google Scholar 

  • Ryan MH, Chilvers GA, Dumaresq DC (1994) Colonisation of wheat by VA-mycorrhizal fungi was found to be higher on a farm managed in an organic manner than on a conventional neighbour. Plant Soil 160:33-40

    Google Scholar 

  • Ryan MH, Small DR, Ash JE (2000) Phosphorus controls the level of colonisation by arbuscular mycorrhizal fungi in conventional and biodynamic irrigated dairy pastures. Aust J Exp Agric 40:663-670

    Google Scholar 

  • Saito M, Marumoto T (2002) Inoculation with arbuscular mycorrhizal fungi: the status quo in Japan and the future prospects. Plant Soil 244:273-279

    CAS  Google Scholar 

  • Salem SF, Dobolyi C, Helyes L, Pck Z, Dimcny J (2003) Side-effect of benomyl and captan on arbuscular mycorrhizal formation in tomato plant. ISHS Acta Hortic 613:243-246.

    CAS  Google Scholar 

  • Sattelmacher B, Reinhard S, Pomikalako A (1991) Differences in mycorrhizal colonization of rye (Secale cereale L.) grown in conventional or organic (biological-dynamic) farming systems. J Agron Crop Sci 167:350-355

    Google Scholar 

  • Schalamuk S, Velazquez S, Chidichimo H, Cabello M (2006) Fungal spore diversity of arbuscular mycorrhizal fungi associated with spring wheat: effects of tillage. Mycologia 98:16-22

    CAS  PubMed  Google Scholar 

  • Schreiner RP, Bethlenfalvay GJ (1997) Plant and soil response to single and mixed species of arbuscular mycorrhizal fungi under fungicide stress. Appl Soil Ecol 7:93-102

    Google Scholar 

  • Schwab SM, Johnson ELV, Menge JA (1982) Influence of simazine on formation of vesiculararbuscular mycorrhizae in Chenopodium quinona Willd. Plant Soil 64:283-287

    CAS  Google Scholar 

  • Schweiger PF, Jakobsen I (1998) Dose-response relationships between four pesticides and phosphorus uptake by hyphae of arbuscular mycorrhizas. Soil Biol Biochem 30:1415-1422

    CAS  Google Scholar 

  • Sieverding E (1991) Vesicular-arbuscular management in tropical agrosystems. Deutsche Gesellschaft für Technische Zusammenarbeit, Eschborn, Federal Republic of Germany

    Google Scholar 

  • Sieverding E, Leihner DE (1984) Effect of herbicides on population Dynamics of VA-mycorrhiza with cassava. Angew Botanik 58:283-294.

    CAS  Google Scholar 

  • Siquiera JO, Safir GR, Nair MG (1991) VA-mycorrhizae and mycorrhiza stimulating isoflavanoid compounds reduce plant herbicide injury. Plant Soil 134:233-242

    Google Scholar 

  • Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till Res 79:7-31

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, New York

    Google Scholar 

  • Srinath J, Bagyaraj D, Satyanarayana B (2003) Enhanced growth and nutrition of micropropagated Ficus benjamina to Glomus mosseae co-inoculated with Trichoderma harzianum and Bacillus coagulans. World J Microbiol Biotechnol 19:69-72

    CAS  Google Scholar 

  • Stanton NL (1988) The underground in grasslands. Annu Rev Ecol Syst 19:573-589

    Google Scholar 

  • Subba Rao NS (1993) Biofertilizers in agriculture and forestry. IBH, New Delhi

    Google Scholar 

  • Sukarno N, Smith FA, Scott ES, Jones GP, Smith SE (1998) The effect of fungicides on vesiculararbuscular mycorrhizal symbiosis. III. The influence of VA mycorrhiza on phytotoxic effects following application of fosetyl-Al and phosphonate. New Phytol 139:321-330

    CAS  Google Scholar 

  • Sylvia DM, Neal LH (1990) Nitrogen affects the phosphorus response of VA mycorrhiza. New Phytol 115:303-310

    CAS  Google Scholar 

  • Tawaraya K, Watanabe S, Yoshida E, Wagatsuma T (1995) Effect of onion (Allium cepa) root exudates on the hyphal growth of Gigaspora margarita. Mycorrhiza 6:57-59

    Google Scholar 

  • Tawaraya K, Hashimoto K, Wagatsuma T (1998) Effect of root exudate fractions from P-deficient and P-sufficient onion plants on root colonisation by the arbuscular mycorrhizal fungus Gigaspora margarita. Mycorrhiza 8:67

    CAS  Google Scholar 

  • Thomson BD, Robson AD, Abbott LK (1986) Effects of phosphorus on the formation of mycorrhizas by Gigaspora calospora and Glomus fasciculatum in relation to root carbohydrates. New Phytol 103:751-765

    Google Scholar 

  • Thomson BD, Robson AD, Abbott LK (1992) The effect of long-term applications of phosphorus fertilizer on populations of vesicular-arbuscular mycorrhizal fungi in pastures. Aust J Agric Res 43:1131-1142

    CAS  Google Scholar 

  • Toro M, Azco N, Barea J M (1997) Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl Environ Microbiol 63:4408-4412

    CAS  PubMed  Google Scholar 

  • Trappe JM, Molina R, Castellano, M (1984) Reactions of mycorrhizal fungi and mycorrhiza formation to pesticides. Annu Rev Phytopathol 22:331-359

    CAS  Google Scholar 

  • Valentine AJ, Osborne BA, Mitchell DT (2001) Interactions between phosphorus supply and total nutrient availability on mycorrhizal colonization, growth and photosynthesis of cucumber. Sci Hortic 88:177-189

    CAS  Google Scholar 

  • Valverde A, Burgos A, Fiscella T, Rivas R, Velázquez E, Rodríguez-Barrueco C, Cervantes E, Chamber M, Igual J-M (2006) Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. Plant Soil 287:43-50

    CAS  Google Scholar 

  • Vandenkoornhuyse P, Baldauf SL, Leyval C, Straczek J, Young JPW (2002) Extensive fungal diversity in plant roots. Science 295:2051

    PubMed  Google Scholar 

  • Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12:3085-3095

    CAS  PubMed  Google Scholar 

  • Vivas A, Marulanda A, Gomez M, Barea JM, Azcon R (2003) Physiological characteristics (SDH and ALP activities) of arbuscular mycorrhizal colonization as affected by Bacillus thuringiensis inoculation under two phosphorus levels. Soil Biol Biochem 35:987-996

    CAS  Google Scholar 

  • von Alten H, Lindemann A, Schonbeck F (1993) Stimulation of vesicular-arbuscular mycorrhiza by fungicides or rhizosphere bacteria. Mycorrhiza 2:167-173

    Google Scholar 

  • Vyas SC, Vyas S (2000) Effect of agrochemicals on mycorrhizae. In: Mukerji KG, Chamola BP, Singh J (eds) Mycorrhizal biology. Kluwer, New York, pp 289-327

    Google Scholar 

  • Wan MT, Rahe JE (1998) Impact of azadirachtin on Glomus intraradices and vesicular-arbuscular mycorrhiza in root inducing transferred DNA transformed roots of Daucus carota. Environ Toxicol Chem 17:2041-2050

    CAS  Google Scholar 

  • Wani SP, Lee KK. (2002). Biofertilizers for sustainable crop production. In: Kannaiyan S (ed) Biotechnology of biofertilizers. Narosa, New Delhi, pp 50-64

    Google Scholar 

  • Wilberforce EM, Boddy L, Griffiths R, Griffith GW (2003) Agricultural management affects communities of culturable root-endophytic fungi in temperate grasslands. Soil Biol Biochem 35:1143-1154

    CAS  Google Scholar 

  • Xavier LJC, Germida JJ (1997) Growth response of lentil and wheat to Glomus clarum NT4 over a range of P levels in a Saskatchewan soil containing indigenous AM fungi. Mycorrhiza 7:3-8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chantal Hamel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ellouze, W., Hanson, K., Nayyar, A., Perez, J.C., Hamel, C. (2008). Intertwined Existence: The Life of Plant Symbiotic Fungi in Agricultural Soils. In: Varma, A. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78826-3_25

Download citation

Publish with us

Policies and ethics