Skip to main content

Why and How Using Micropropagated Trees rather than Germinations for Controlled Synthesis of Ectomycorrhizal Associations?

  • Chapter
Book cover Mycorrhiza

Synthesis of ectomycorrhiza (EM) on genetically uniform plant material in a system aimed at rapid production is a difficult undertaking, as EM almost exclusively form on trees.

To overcome difficulties of genetic heterogeneity, seasonal fluctuations in plant growth and problems with maintenance of aseptic conditions of seedlings, in vitro propagation techniques for trees were proposed in the early 1980s. For micropropagation of trees, differences between episodically and non-episodically growing species have to be considered. Episodically growing trees are much more recalcitrant and often require rejuvenation of the stock plant. Plant morphogenetic and physiological traits and genetic origin play important roles for successful in vitro propagation and rooting. Mycorrhization of micropropagated trees was first established in 1984. Nevertheless, the use of microcuttings for controlled symbiosis has not prevailed and in laboratory studies the work with young seedlings dominates. Since 1985, a micropropagated Quercus robur L. clone DF159 has been used for the establishment of the EM symbiosis. A detailed micropropagation procedure is described for this episodically growing model tree. Difficulties to overcome during the four successive steps entailing primary culture, stabilization and long-term culture, rooting and acclimatization are illustrated and solutions for an optimization of the microcutting production of trees are detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez R, Alonso P, Cortizo M, Celestino C, Hernandez I, Toribio M, Ordas R (2004) Genetic transformation of selected mature cork oak (Quercus suber L.) trees. Plant Cell Rep 23:218-223

    CAS  PubMed  Google Scholar 

  • Barnola P, Alatou D, Lacointe A, Lavarenne S (1990) Etude biologiques et biochimiques du déterminisme de le croissance rythmique du chêne pédonculé (Quercus robur L.). Effects de l’ablation des feuilles. Ann Sci For 21:619-631

    Google Scholar 

  • Beaujard F, Astié M (1983) Les Bruyères in vitro. I. Culture in vitro de L’Erica x darleyensis et mise en évidence d’une croissance rythmique accentuée des rameaux orthotropes. Can J Bot 61:3533-3535

    Google Scholar 

  • Belgrand M, Dreyer E, Joannes H, Velter C, Scuiller I (1987) A semi-automated data processing system for root growth analysis: application to a growing oak seedling. Tree Physiol 3:393-404

    PubMed  Google Scholar 

  • Bois G, Bigras FJ, Bertrand A, Piché Y, Fung MYP, Khasa DP (2006) Ectomycorrhizal fungi affect the physiological responses of Picea glauca and Pinus banksiana seedlings exposed to an NaCl gradient. Tree Physiol 26:1185-1196

    PubMed  Google Scholar 

  • Boling BC, Naab FU, Smith D, Duggan JL, McDaniel FD (2006) Leaf element analysis in mycorrhizal post oak seedlings. Nucl Instr Method 251:182-190

    CAS  Google Scholar 

  • Bond BJ (2000) Age-related changes in photosynthesis of woody plants. Trends Plant Sci 5:349-353

    CAS  PubMed  Google Scholar 

  • Boukcim H, Pagés L, Mousain D (2006) Local NO3or NH4+ supply modifies the root system architecture of Cedrus atlantica seedlings grown in a split-root device. J Plant Physiol 163:1293-1304

    CAS  PubMed  Google Scholar 

  • Buscot F, Herrmann S (2004) At the frontier between basidiomycotes and plants: reciprocal interactions between mycorrhiza formation and root development in an in vitro system with oaks and hymenomycetes. In: Agerer R, Piepenbring M, Blanz P (eds) Frontiers in basidiomycote mycology. IHW, Eching, pp 361-376

    Google Scholar 

  • Cavender-Bares J, Bazzaz FA (2000) Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. Oecologia 124:8-18

    Google Scholar 

  • Chabukswar MA, Deodhar MA (2006) Restoration of rooting competence in a mature plant of Garcinia indica through serial shoot tip grafting in vitro. Sci Hortic 108:194-199

    CAS  Google Scholar 

  • Chalupa V (1984) In vitro propagation of oak (Quercus robur L.) and linden (Tilia cordata MILL.). Biol Plant 26:374-377

    CAS  Google Scholar 

  • Chalupa V (1988) Large scale micropropagation of oak (Quercus robur L.) using adenine-type cytokinins and thidiazuron to stimulate shoot proliferation. Biol Plant 30:414-421

    CAS  Google Scholar 

  • Champagnat P (1983) Quelques réflexions sur la dormance des bourgeons des végétaux ligneux. Physiol Vég 21:607-618

    Google Scholar 

  • Champagnat P, Payan E, Champagnat M, Barnola P, Lavarenne S, Bertolon C (1986) La croissance rythmique de jeunes chênes pédonculés cultivés en conditions contrôlées et uniformes. Naturalia Monspeliensia Colloque International sur l’Arbre, Montpellier, pp 303-337

    Google Scholar 

  • Clowes FAL (1951) The structure of mycorrhizal roots of Fagus sylvatica. New Phytol 50:1-16

    Google Scholar 

  • David A, David H, Faye, M. Isemukali K (1979) Culture in vitro et micropropagation du Pin maritime (Pinus pinaster sol.) AFOCEL, Etud Rech 12:33-40

    Google Scholar 

  • Declerck S, Strullu DG, Fortin JA (2005) In vitro culture of mycorrhizas. In: Varma A (ed) Soil biology, vol 4. Springer, Heidelberg, pp 341-375

    Google Scholar 

  • Dighton J, Mason PA (1985) Mycorrhizal dynamics during forest tree development. In: Moore D, Casselton LA, Woods DA, Frankland JC (eds) Development biology of higher fungi. Cambridge University Press, Cambridge, pp 117-139

    Google Scholar 

  • Druart P, Klevers C, Boxus P, Gaspar T (1982) In vitro promotion of root formation by apple shoots through darkness effect on endogenous phenols and peroxidases. Z Pflanzenphysiol 108:429-436

    CAS  Google Scholar 

  • Dumas E, Monteuuis O (1995) In vitro rooting of micropropagated shoots juvenile and mature Pinus pinaster explants: influence of activated charcoal. Plant Cell Tissue Organ Cult 40:231-235

    Google Scholar 

  • Durall DM, Jones MD, Tinker PB (1994) Allocation in C-14 carbon in ectomycorrhizal willow. New Phytol 128:109-114

    CAS  Google Scholar 

  • Edelin C (1981) Some features of conifers vegetative architecture. Lett Bot 128:177-188

    Google Scholar 

  • Evers P, Vermeer E, Van Eeden S (1993) Rejuvenation of Quercus robur. Ann. Sci. Forestière 50:330-335

    Google Scholar 

  • Favre JM, Dexheimer J, Juncker B, Lei J (1987) Vitroplants et mycorhization controlée: deux outils complémentaires pour valoriser du matériel de qualité un exemple: Quercus robur L. Actes du 2. Colloque sciences et industries du bois, Nancy, pp 185-192

    Google Scholar 

  • Favre JM, Juncker B (1987) In vitro growth of buds taken from seedlings and adult plant material in Quercus robur L. Plant Cell Tissue Organ Cult 8:49-60

    CAS  Google Scholar 

  • Favre JM, Juncker B (1989) Variations in expression of episodic growth by in vitro cultured shoots of oak (Quercus rubur L.). Ann Sci For 46:206-210

    Google Scholar 

  • Fillatti JJ, Sellmer J, McCown B, Haissing B, Comai L (1987) Agrobacterium-mediated transformation and regeneration of Populus. Mol Gen Genet 206:192-199

    CAS  Google Scholar 

  • Fouret Y, Arnaud Y, Larrie C (1984) Rajeunissement in vitro du Sequoia sempervirens. AFOCEL Annales des recherches sylvicoles, pp 111-137

    Google Scholar 

  • Franclet A, Boulay M, Ekkaoui F, Fouret Y, Verschoore-Martouzet B, Walker N (1987) Rejuvenation. In: Bonga M, Durzan DJ (eds) Cell and tissue culture in forestry, vol. 1 General principles and biotechnology. Nijhoff, Dordrecht, pp 232-248

    Google Scholar 

  • Franclet A, Franclet-Mirvaux MC (1992) Elimination of topophysis in Sequoia sempervirens clone NP29: A model plant useful to progress in understanding the concept of rejuvenation. Proceedings of the IUFRO Symposium “Mass production technology for genetically improved fast growing forest tree species”, Bordeaux, AFOCEL, Nangis, pp, 113-125

    Google Scholar 

  • Fredericksen TS, Steiner KC, Skelly JM, Joyce BJ, Kolb TE, Kouterick KB, Ferdinand JA (1996) Diel and seasonal patterns of leaf gas exchange and xylem water potentials of different-sized Prunus serotina Ehrh trees. For Sci 42:359-365

    Google Scholar 

  • Frettinger P, Herrmann S, Lapeyrie F, Oelmüller R, Buscot F (2006) Diffferential expression of two class III chitinases in two types of roots of Quercus robur during pre-mycorrhizal interactions with Piloderma croceum. Mycorrhiza 16:219-223

    CAS  PubMed  Google Scholar 

  • Frettinger P, Derory J, Herrmann S, Plomion C, Lapeyrie F, Oelmüller R, Martin F, Buscot F (2007) Transcriptional changes in two types of pre-mycorrhizal roots and in ectomycorrhizas of oak microcuttings inoculated with Piloderma croceum. Planta 225:331-340

    CAS  PubMed  Google Scholar 

  • Gehring CA (2004) Seed reserves and light intensity affect the growth and mycorrhiza development of the seedlings of an Australian rain-forest tree. J Tropic Ecol 20:345-349

    Google Scholar 

  • Gibson F, Deacon JW (1990) Establishment of ectomycorrhizas in aseptic culture: effects of glucose, nitrogen and phosphorus in relation to successions. Mycol Res 94:166-172

    Google Scholar 

  • Gleeson D (2005) Overproduction of proline in transgenic hybrid larch (Larix leptoeuropaea Dengler) cultures renders them tolerant to cold, salt and frost. Mol Breed 15:21-29

    CAS  Google Scholar 

  • Grange O, Bärtschi H, Gay G (1997) Effect of the ectomycorrhizal fungus Hebeloma cylindrosporum on in vitro rooting of micropropagated cuttings of arbuscular mycorrhiza forming Prunus avium and Prunus cerasus. Trees 12:49-56

    Google Scholar 

  • Greenwood MS (1987) Rejuvenation of forest trees. Plant Growth Regul 6:1-12

    CAS  Google Scholar 

  • Grellier B, Letouzé R, Strullu DG (1984) Micropropagation of birch and mycorrhizal formation in vitro. New Phytol 97:591-570

    Google Scholar 

  • Gresshof OM, Doy CH (1972) Development and differentiation of haploid Lycopersicum esculentum (tomato). Planta 107:161-170

    Google Scholar 

  • Gruber F (1987) Über die sylleptische Verzeigung der Johannistriebe von Rotbuche und Stieleiche. Allg Forst Z 49:1283-1285

    Google Scholar 

  • Hackett WP (1985) Juvenility, maturation, and rejuvenation in woody plants. Hortic Rev 7:109-155

    Google Scholar 

  • Hallé F, Martin R (1968) Etude de la croissance rythmique chez l’hévéa (Hevea brasiliensis Müll.Arg. euphorbiacées-crotonoidées). Adansonia:475-503

    Google Scholar 

  • Hallé F, Oldeman RA, Tomlinson PB (1978) Tropical trees and forests: an architectural analysis. Springer, Heidelberg

    Google Scholar 

  • Harmer R (1989) The effect of mineral nutrients on growth, flushing, apical dominance and branching in Quercus petraea (Matt.) Liebl For Oxford 62:383-395

    Google Scholar 

  • Harmer R (1990) Relation of shoot growth phases in seedling oak to development of the tap root, lateral roots and fine root tips. New Phytol 115:23-27

    Google Scholar 

  • Herrmann S, Buscot F (2007) Cross talks at the morphogenetic, physiological and gene regulation levels between the mycobiont Piloderma croceum and oak microcuttings (Quercus robur L.) during formation of mycorrhizas. Phytochemistry 68:52-67

    CAS  PubMed  Google Scholar 

  • Herrmann S, Ritter T, Kottke I, Oberwinkler F (1992) Steigerung der Leistungsfähigkeit von Forstpflanzen (Fagus silvatica L. und Quercus robur L.) durch kontrollierte Mykorrhizierung. Allg Forst Jagdz 4:72-79

    Google Scholar 

  • Herrmann S, Munch JC, Buscot F (1998) A gnotobiotic culture system with oak microcuttings to study specific effects of mycobionts on plant morphology before, and in the early phase of ectomycorrhiza formation by Paxillus involutus and Piloderma croceum. New Phytol 138:203-212

    Google Scholar 

  • Herrmann S, Oelmüller R, Buscot F (2004) Manipulation of the onset of ectomycorrhiza formation by indole-3-acetic acid, activated charcoal or relative humidity in the association between oak microcuttings and Piloderma croceum: influence on plant development and photosynthesis. J Plant Physiol 161:509-517

    CAS  PubMed  Google Scholar 

  • Ichie T, Ninomiya I, Ogino K (2001) Utilization of seed reserves during germination and early seedling growth by Dryobalanops lanceolata (Dipterocarpaceae). J Trop Ecol 17:371-378

    Google Scholar 

  • Ishida A, Yazaki K, Hoe AL (2005) Ontogenetic transition of leaf physiology and anatomy from seedlings to mature trees of a rain forest pioneer tree, Macaranga gigantea. Tree Physiol 25:513-522

    PubMed  Google Scholar 

  • Jacobs WP, Danielson J, Hurst V, Adams P (1959) What substance normally controls a given biological process? 2. The relation of auxin to apical dominance. Devel Biol 1:534-554

    Google Scholar 

  • Jucknischke A, Kutschera U (1998) The role of the cotyledons and primary leaves during seedling establishment in sunflower. J Plant Physiol 153:700-705

    CAS  Google Scholar 

  • Juncker B, Favre JM (1989) Clonal effects in propagating oak trees via in vitro culture. Plant Cell Tissue Organ Cult 19:267-276

    Google Scholar 

  • Juncker B, Favre JM (1994) Long-term effects of culture establishment from shoot-tip explants in micropropagating oak (Quercus robur L.). Ann Sci For 51:581-588

    Google Scholar 

  • Kaldorf M, Fladung M, Muhs HJ, Buscot F (2002) Mycorrhizal colonization of transgenic aspen in a field trial. Planta 214:653-660

    CAS  PubMed  Google Scholar 

  • Kostner B, Falge E, Tenhunen JD (2002) Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany. Tree Physiol 22:567-574

    CAS  Google Scholar 

  • Kottke I, Guttenberger M, Hampp R, Oberwinkler F (1987) An in vitro method for establishing mycorrhizae on coniferous tree seedlings. Trees 1:191-194

    Google Scholar 

  • Kozlowski TT (1971) Growth and development of trees. I. Seed germination, ontogeny and shoot growth. Academic, New York

    Google Scholar 

  • Krüger A, Peskan T, Frettinger P, Herrmann S, Buscot F, Oelmüller R (2004) Identification of pre-mycorrhiza related plant genes in the association between Quercus robur and Piloderma croceum. New Phytol 163:149-157

    Google Scholar 

  • Lardet L, Aguilar ME, Michaux-Ferriere N, Berthouly M (1998) Effect of strictly plant-related factors on the response of Hevea brasiliensis and Theobroma cacao nodal explants cultured in vitro. In Vitro Cell Dev Biol Plant 34:34-40

    Google Scholar 

  • Lavarenne S (1966) Croissance rythmique de quelques espèces de chênes cultivés en conditions climatisées. C R Acad Sci Ser III 262:358-361

    Google Scholar 

  • Lavarenne S (1968) Croissance comparée des tiges et des racines de jeunes chênes cultivés en conditions contrôlée. C R Acad Sci Ser III 266:778-780

    Google Scholar 

  • Leple JC, Brasileiro ACM, Michel MF, Delmotte F, Jouanin L (1992) Transgenic Poplars expression of chimeric genes using 4 different constructs. Plant Cell Rep 11:137-141

    CAS  Google Scholar 

  • Lopes T, Pinto G, Loureiro J, Costa A, Santos C (2006) Determination of genetic stability in longterm somatic embryogenic cultures and derived plantlets of cork oak using microsatellite markers. Tree Physiol 26:1145-1152

    CAS  PubMed  Google Scholar 

  • Marjanovic Z, Uehlein N, Kaldenhoff R, Zwiazek JJ, Weiss M, Hampp R, Nehls U (2005) Aquaporin in poplar: What a difference a symbiont makes! Planta 222:258-268

    CAS  PubMed  Google Scholar 

  • Mason PA, Last FT (1986) Are the occurrence of sheathing mycorrhizal fungi in new and regenerating forests and woodlands in Scotlands predictable. In: Jenkins D (ed) Trees and wildlife in Scottish uplands. Institute of Terrestrial Ecology, Huntingdon, pp 63-70

    Google Scholar 

  • Massicotte HB, Peterson RL, Ashford AE (1987) Ontogeny of Eucalyptus pilularis-Pisolithus tinctorius ectomycorrhizae. I. Light microscopy and scanning electron microscopy. Can J Bot 65:1927-1939

    Google Scholar 

  • McCown BH (2000) Special symposium: in vitro plant recalcitrance. Recalcitrance of woody and herbaceous perennial plants dealing with genetic predeterminism. In Vitro Cell Dev Biol Plant 36:149-154

    Google Scholar 

  • McCown DD, McCown BH (1987) North American hardwoods. In: Bonga JM, Durzan DJ, (eds) Cell and tissue culture in forestry, vol 3. Case histories: gymnospermes, angiosperms and palms. Nijhoff, Dordrecht, pp 247-260

    Google Scholar 

  • McPhee K (2005) Variation for seedling root architecture in the core collection of Pea Germplasm. Crop Sci 45:1758-1763

    Google Scholar 

  • Meier-Dinkel A (1987) In vitro propagation and in vitro establishment of pedunculate oak (Quercus robur L.) and sessile oak (Quercus petraea (Matt.) Liebl.). Allg Forst Jagdz 158:199-204

    Google Scholar 

  • Meier-Dinkel A, Becker B, Duckstein D (1993) Micropropagation and ex vitro rooting of several clones of late-flushing Quercus robur L. Ann Sci For 50:319-322

    Google Scholar 

  • Mencuccini M, Martinez-Vilalta J, Hamid HA, Korakaki E, Vanderklein D (2007) Evidence for ageand size-mediated controls of tree growth from grafting studies. Tree Physiol 27:463-473

    PubMed  Google Scholar 

  • Merouani H, Apolinario LM, Almeida MH, Pereira JS (2003) Morphological and physiological maturation of acorns of cork oak (Quercus suber L.). Seed Sci Technol 31:111-124

    Google Scholar 

  • Millet B, Bonnet B, El-Morsy AW (1991) Le fonctionnement rythmique des végétaux ligneux. L’arbre: biologie et développement, pp 295-317

    Google Scholar 

  • Misson JP, Coumans M, Giot-Wirgot P, Gaspar T (1982) Induction de bourgeons adventifs sur bourgeons de Picea pungens en culture in vitro. Z Pflanzenphysiol 107:161-167

    Google Scholar 

  • Moncousin C, Gaspar T (1983) Peroxidase as a marker for rooting improvement of Cynara scolymus L. cultured in vitro” Biochem Physiol Pflanzen 178:263-271

    CAS  Google Scholar 

  • Monteuuis O, Bon MC (2000) Influence of auxins and darkness on in vitro rooting of micropropagated shoots from mature and juvenile Acacia mangium. Plant Cell Tissue Organ Cult 63:173-177

    CAS  Google Scholar 

  • Mulatya JM, Wilson J, Ong CK, Deans JD, Srent JI (2002) Root architecture of provenances, seedlings and cuttings of Melia volkensii: implications for crop yield in dryland agroforestry. Agrofor Syst 56:65-72

    Google Scholar 

  • Murashige, T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:1327-1334

    Google Scholar 

  • Nehls U (2007) Mastering mycorrhizal symbiosis: Sugar as signal and nutrient in Amanita muscaria/poplar ectomycorrhizas. Comp Biochem Physiol A 146:216-216

    Google Scholar 

  • Niemi K, Häggman H, Sarjala T (2002) Effects of exogenous diamines on the interaction between ectomycorrhizal fungi and adventitious root formation in Scots pine in vitro. Tree Physiol 22:373-381

    CAS  PubMed  Google Scholar 

  • Normand L, Bärtschi H, Debaud J-C, Gay G (1996) Rooting and acclimatization of microprogagated cutting of Pinus pinaster and Pinus sylvestris are enhanced by the ectomycorrhizal fungus Hebeloma cylindrosporum. Physiol Plant 98:759-766

    CAS  Google Scholar 

  • Pena L, Seguin A (2001) Recent advances in the genetic transformation of trees. Trends Biotechnol 19:500-506

    CAS  PubMed  Google Scholar 

  • Peterson RL, Chakravarty P (1991) Techniques in synthesizing mycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology, vol 23. Harcourt Brace Jovanovich, London, pp 75-106

    Google Scholar 

  • Pierik RLM (1990) Rejuvenation and micropropagation. Progress in plant cellular and molecular biology. Proc VIIth Int Cong Plant Tissue and Cell Culture, Amsterdam, pp 91-101

    Google Scholar 

  • Pierik RLM, Oosterkamp J, Ebbing MAC (1997) Factors controlling adventitious root formation of explants from juvenile and adult Quercus robur fastigiata. Sci Hortic 71:87-92

    Google Scholar 

  • Puddephat IJ, Alderson PG, Wright NA (1997) Influence of explant source, plant growth regulators and culture environment on culture initiation and establishment of Quercus robur L. in vitro. J Exp Bot 48:951-962

    CAS  Google Scholar 

  • Rancillac M (1979) Morphologie du système racinaire de Pinus pinaster Sol. sur bourgeons isolés ou plantes entières in vitro: mycorhization. C R Congr Nat Soc Sav 104:377-389

    Google Scholar 

  • Rancillac M (1982) Multiplication végétative in vitro et synthèse mycorhizienne: pin maritime Hebelome, Pisolithe. Les mycorrhizes: biologie et utilisation. Les Colloques de l’INRA 13:351-356

    Google Scholar 

  • Rao CS, Sharma GD, Shukla AK (1997) Distribution of ectomycorrhizal fungi in pure stands of different age groups of Pinus kesiya. Can J Microbiol 43:85-91

    Article  CAS  Google Scholar 

  • Riedacker A, Belgrand M (1983) Morphogénèse des systèmes racinaires des semis et boutures de chêne pédonculé. Plant Soil 71:131-146

    Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomelean fungi from the Ordovician. Science 289:1920-1921

    CAS  PubMed  Google Scholar 

  • Riffaud JL, Cornu D (1981) Utilisation de la culture in vitro pour la multiplication de Merisiers adultes (Prunus avium L.) selectionnés en forêt. Agronomie 1:633-640

    Google Scholar 

  • Robertson NF (1954) Studies on the mycorrhiza of Pinus sylvestris. New Phytol 53:253-283

    Google Scholar 

  • Rust S, Roloff A (2002) Reduced photosynthesis in old oak (Quercus robur): the impact of crown and hydraulic architecture. Tree Physiology 22:597-601

    PubMed  Google Scholar 

  • San-Jose MC, Ballester A, Vieitez AM (1988) Factors affecting in vitro propagation of Quercus robur L. Tree Physiol 4:281-290

    PubMed  Google Scholar 

  • Schöpfer P, Brennecke A (2006) Pflanzenphysiologie 6. Auflage. Elsevier, München

    Google Scholar 

  • Simoneau P, Viemont JD, Moreau JC, Strullu DG (1993) Symbiosis-related polypetides associated with early stages of ectomycorrhiza organogenesis in birch (Betula pendula Roth). New Phytol 124:495-504

    CAS  Google Scholar 

  • Simoneau P, Juge C, Dupuis JY, Viemont JD, Moreau C, Strullu DG (1994) Protein biosynthesis changes during mycorrhiza formation in roots of micropropagated birch. Acta Bot Gal 141:429-435

    CAS  Google Scholar 

  • Slankis V (1973) Hormonal relationships in mycorrhizal development. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae. Academic, New-York, pp 231-298

    Google Scholar 

  • Smith JE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, London

    Google Scholar 

  • Soumoy L, Thiébaut B, Sérey I (1996) Développement de quelques Fagaceae japonaises; germination, modèle architectural, et systématique. Can J Bot 74:1248-1259

    Google Scholar 

  • Stein A, Fortin JA, Vallee G (1988) Enhanced rooting of Picea mariana cuttings by ectomycorrhizal fungi. Can J Bot 68:468-470

    Google Scholar 

  • Stromquist L, Hansen J (1980) Effects of auxin and irradiance on the rooting of cuttings of Pinus sylvestris. Physiol Plant 49:346-350

    Google Scholar 

  • Strullu DG (1985) Les mycorrhizes. Borntraeger, Berlin

    Google Scholar 

  • Strullu DG, Grellier B, Letouzé, R (1984) Mycorhizes et micropropagation in vitro: concepts et réalisations. C R Acad Agri Fr 70:1331-1337

    Google Scholar 

  • Strullu DG, Grellier B, Marciniak D, Letouzé R (1986) Micropropagation of chestnut and conditions of mycorrhizal synthesis in vitro. New Phytol 102:95-101

    Google Scholar 

  • Tang W, Sederoff R, Whetten R (2001) Regeneration of transgenic loblolly pine (Pinus taeda L.) from zygotic embryos transformed with Agrobacterium tumefaciens. Planta 213:981-989

    CAS  PubMed  Google Scholar 

  • Valladares S, Sanchez C, Martinez MT, Ballester SA, Vieitez AM (2006) Plant regeneration through somatic embryogenesis from tissues of mature oak trees: true-to-type conformity of plantlets by RADP analysis. Plant Cell Rep 25:879-886

    CAS  PubMed  Google Scholar 

  • Van der Heijden EW, Kuyper TW (2001) Does origin of mycorrhizal fungus or mycorrhizal plant influence effectiveness of the mycorrhizal symbiosis? Plant Soil 230:161-174

    CAS  Google Scholar 

  • Van Hees PAW, Rosling A, Essens S, Godbold DL, Jones DL, Finlay RD (2006) Oxalate and ferricrocin exudation by the extramatrical mycelium of an ectomycorrhizal fungus in symbiosis with Pinus sylvestris. New Phytol 169:367-377

    PubMed  Google Scholar 

  • Vauramo S, Pasonen HL, Pappinen A, Setala H (2006) Decomposition of leaf litter from chitinase transgenic silver birch (Betula pendula) and effects on decomposer populations in a field trial. Appl Soil Ecol 32:338-349

    Google Scholar 

  • Vermeer E (1991) Rejuvenation, micropropagation and field testing of Quercus robur. Acta Hortic 289:324-325

    Google Scholar 

  • Vieitez AM, San-Jose MC, Vieitez E (1985) In vitro plantlet regeneration from juvenile and mature Quercus robur, L. J Hortic Sci 60:99-106

    Google Scholar 

  • Vieitez AM, Sanchez M, Amo-Marco J, Ballester A (1994) Forced flushing of branch segments as a method for obtaining reactive explants of mature Quercus robur trees for micropropagation. Plant Cell Tissue Organ Cult 37:287-295

    Google Scholar 

  • Wallander H, Hagerberg D, Aberg G (2006) Uptake of Sr-87 from microcline and biotite by ectomycorrhizal fungi in a Norway spruce forest. Soil Biol Biochem 38:2487-2490

    CAS  Google Scholar 

  • Wang TL, Wareing PF (1979) Cytokinins and apical dominance in Solanum andigena: lateral shoot growth and endogenous cytokinin levels in the absence of roots. New Phytol 82:19-28

    CAS  Google Scholar 

  • Wickson M, Thimann KV (1958) The antagonism of auxin and kinetin in apical dominance. Physiol Plant 11:62-74

    CAS  Google Scholar 

  • Wiemken V (1994) Contributions of studies with in vitro culture systems to the understanding of the ectomycorrhizal symbiosis. In: Varma A, Hock B (eds) Mycorrhiza. Springer, Heidelberg, pp 411-425

    Google Scholar 

  • Wilcox HE (1968) Morphological studies of the roots of red pine, Pinus resinosa. I. Growth characteristics and branching patterns. Am J Bot 55:247-254

    Google Scholar 

  • Wong KKY, Fortin JA (1988) A Petri dish technique for the aseptic synthesis of ectomycorrhizae. Can J Bot 67:1713-1716

    Google Scholar 

  • Woo HH, Hackett WP, Das A (1994) Differential expression of a chlorophyll A/B binding-protein gene and a proline-rich protein gene in juvenile and mature phase English ivy (Hedera helix). Physiol Plant 92:69-78

    Google Scholar 

  • Zaczek JJ, Steiner KC, Neuser CW, Tzilkowski WM (2006) Effects of serial grafting, ontogeny, and genotype on rooting of Quercus rubra cuttings. Canadian Journal of Forest ResearchRevue Canadienne de Recherche Forestière 36:123-131

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Herrmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herrmann, S., Buscot, F. (2008). Why and How Using Micropropagated Trees rather than Germinations for Controlled Synthesis of Ectomycorrhizal Associations?. In: Varma, A. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78826-3_22

Download citation

Publish with us

Policies and ethics