Skip to main content
Book cover

Mycorrhiza pp 375–402Cite as

Agronomic Management of Indigenous Mycorrhizas

  • Chapter

Many benefits that accrue to plants from their association with arbuscular mycorrhizal (AM) fungi are a function of the increased volume of soil that can be explored by the extraradical mycelium. Sieverding (1991) estimates that for each centimeter of colonized root there is an increase of 15 cm3 on the volume of soil explored, this value can increase to 200 cm3 depending on the environmental conditions. The enhanced volume of soil explored, together with the ability of the extraradical mycelium to absorb and translocate nutrients to the plant, results in one of the most obvious and important advantages of mycorrhizal formation: the ability to take up more nutrients. The more important nutrients in this respect are those that have limited mobility in soil, such as phosphorus (P). In addition to nutrient acquisition many other benefits are associated with AM plants (Gupta et al. 2000): alleviation of water stress (Augé 2004; Cho et al. 2006), protection from root pathogens (Graham 2001), tolerance to toxic metals (Audet and Charest 2006), tolerance to adverse temperature, salinity and pH (Sannazzaro et al. 2006; Yano and Takaki 2005), and better performance following transplantation shock (Subhan et al. 1998). The enhanced tolerance to toxic metals provide by arbuscular mycorrhizas can be of benefit in phytoremediation (Göhre and Paszkowski 2006). The extraradical hyphae also stabilize soil aggregates by both enmeshing soil particles (Miller and Jastrow 1990) and as a result of the production of substances that adhere soil particles together (Goss and Kay 2005).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott LK, Robson AD (1981) Infectivity and effectiveness of vesicular arbuscular mycorrhizal fungi: effect of inoculum type. Aust J Agric Res 32:631-639

    Google Scholar 

  • Abbott LK, Robson AD (1991) Field management of VA mycorrhizal fungi. In: Keister DL, Gregan PB (eds) The rhizosphere and plant growth. Kluwer, Dordrecht, pp 355-362

    Google Scholar 

  • Abbott LK, Robson AD, Scheltema MA, (1995) Managing soils to enhance mycorrhizal benefits in Mediterranean agriculture. Crit Rev Biotechnol 15:213-228

    Google Scholar 

  • Addy HD, Miller MH, Peterson RL (1997) Infectivity of the propagules associated with extraradical mycelia of two AM fungi following winter freezing. New Phytol 135:745-753

    Google Scholar 

  • Ahmed FRS, Killham K, Alexander I. (2006) Influences of arbuscular mycorrhizal fungus Glomus mosseae on growth and nutrition of lentil irrigated with arsenic contaminated water. Plant Soil 283:33-41

    CAS  Google Scholar 

  • Al-Karaki GN, Clark, RB (1998) Growth, mineral acquisition, and water use by mycorrhizal wheat grown under water stress. J Plant Nutr 21:263-276

    CAS  Google Scholar 

  • Allen BL, Jolley VD, Robbins CW, Freeborn LL (2001) Fallow versus wheat cropping of una-mended and manure-amended soils related to mycorrhizal colonization, yield, and plant nutrition of dry bean and sweet corn. J Plant Nutr 24:921-943

    CAS  Google Scholar 

  • Antunes PM, de Varennes A, Rajcan I, Goss MJ (2006a) Accumulation of specific flavonoids in soybean (Glycine max (L.) Merr.) as a function of the early tripartite symbiosis with arbuscular mycorrhizal fungi and Bradyrhizobium japonicum (Kirchner) Jordan. Soil Biol Biochem 38:1234-1242

    CAS  Google Scholar 

  • Antunes PM, Deaville D, Goss MJ (2006b) Effect of two AMF life strategies on the tripartite symbiosis with Bradyrhizobium japonicum and soybean. Mycorrhiza 16:167-173

    PubMed  Google Scholar 

  • Antunes PM, Schneider K, Hillis D, Klironomos JN (2007) Can the arbuscular mycorrhizal fungus Glomus intraradices actively mobilize P from rock phosphates? Pedobiologia 51:281-286

    CAS  Google Scholar 

  • Arihara J, Karasawa T (2000) Effect of previous crops on arbuscular mycorrhizal formation and growth of succeeding maize. Soil Sci Plant Nutr 46:43-51

    Google Scholar 

  • Arines J, Vilariño A (1989) Use of nutrient: phosphorus ratios to evaluate the effects of vesicular-arbuscular mycorrhiza on nutrient uptake in unsterilized soils. Biol Fertil Soils 8:293-297

    CAS  Google Scholar 

  • Audet P, Charest C (2006) Effects of AM colonization on “wild tobacco” plants grown in zinc-contaminated soil. Mycorrhiza 16:277-283

    CAS  PubMed  Google Scholar 

  • Augé RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84:373-381

    Google Scholar 

  • Azcón R, Ocampo JA (1981) Factors affecting the vesicular-arbuscular infection and mycorrhizal dependency of thirteen wheat cultivars. New Phytol 87:677-685

    Google Scholar 

  • Azcón-Aguilar C, Barea JM, Olivares J (1980) Effects of Rhizobium polysaccharides on VA mycorrhiza formation. 2nd International Symposium on Microbial Ecology, University of Warwick, Coventry, U.K., Abstract No 187

    Google Scholar 

  • Becard G, Pfeffer PE (1993) Status of nuclear division in arbuscular mycorrhizal fungi during in-vitro development. Protoplasma 174:62-68

    Google Scholar 

  • Bethlenfalvay GJ, Franson RL (1989) Manganese toxicity alleviated by mycorrizae in soybean. J Plant Nutr 12:953-970

    CAS  Google Scholar 

  • Black RLB, Tinker PB (1977) Interaction between effects of vesicular-arbuscular mycorrhiza and fertiliser phosphorus on yields of potatoes in the field. Nature 267:510-511

    CAS  Google Scholar 

  • Boddington CL, Dodd JC (2000a) The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. I. Field studies in an Indonesian ultisol. Plant Soil 218:137-144

    CAS  Google Scholar 

  • Boddington CL, Dodd JC (2000b) The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. II. Studies in experimental microcosms. Plant Soil 218:145-157

    CAS  Google Scholar 

  • Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189-207

    CAS  Google Scholar 

  • Borie F, Rubio R, Rouanet JL, Morales A, Borie G, Rojas C (2006) Effects of tillage systems on soil characteristics, glomalin and mycorrhizal propagules in a Chilean Ultisol. Soil Tillage Res 88:253-261

    Google Scholar 

  • Brito I, Carvalho M, van Tuinen D, Goss MJ (2006a) Effect of soil management and weed control on the diversity and establishment of arbuscular mycorrhizal colonisation of wheat in Mediterranean climates. In: Barea JM, Azcón C, Gutiérrez F, Gonzalez F, Molina AJ (Eds). 5th International Conference on Mycorrhiza. Estacion Experimental del Zaidín, Spain, p 268

    Google Scholar 

  • Brito I, Carvalho M, van Tuinen D, Goss MJ (2006b) Effects of soil management on arbuscular mycorrhizal fungi in autumn-sown crops in Mediterranean climates. In: Horn R, Fleige H, Peth S, Peng X (eds) Soil management for sustainability. Advances in geoecology 38. Catena, Germany, pp 149-156

    Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11-26

    CAS  PubMed  Google Scholar 

  • Burleigh SH, Cavagnaro T, Jakobsen I (2002) Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition. J Exp Bot 53:1593-1601

    CAS  PubMed  Google Scholar 

  • Cavagnaro TR, Jackson LE, Six J, Ferris H, Goyal S, Asami D, Scow KM (2006) Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant Soil 282:209-225

    CAS  Google Scholar 

  • Chalk PM, Souza RD, Urquiaga S, Alves BJR, Boddey RM (2006) The role of arbuscular mycorrhiza in legume symbiotic performance. Soil Biol Biochem 38:2944-2951

    CAS  Google Scholar 

  • Chandrashekara CP, Patil VC, Sreenivasa MN (1995) VA-mycorrhiza mediated P effect on growth and yield of sunflower (Helianthus annuus L.) at different P levels. Plant Soil 176:325-328

    CAS  Google Scholar 

  • Cho K, Toler HD, Lee J, Ownley BH, Jean C. Stutz JC, Moore JL, Augé RM (2006) Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. J Plant Physiol 163: 517-528

    CAS  PubMed  Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867-902

    CAS  Google Scholar 

  • Clark RB, Zobel RW, Zeto SK (1999) Effects of mycorrhizal fungus isolates on mineral acquisition by Panicum virgatum in acidic soil. Mycorrhiza 19:167-176

    Google Scholar 

  • Cook RJ (1992) Wheat root health management and environmental concern. Can J Plant Path 14:76-85

    Google Scholar 

  • Cordier C, Gianinazzi-Pearson V, Gianinazzi S (1996) An immunological approach for the study of spatial relationships between mycorrhizal fungi in planta. In: Barea JM, Azcón-Aguilar C (eds) Mycorrhizas in integrated systems: from genes to plant development. European Commission, Luxembourg EUR 16 728:25-30

    Google Scholar 

  • Corkidi L, Rowland DL, Johnson NC, Allen EB (2002) Nitrogen fertilization alters the function-ing of arbuscular mycorrhizas at two semiarid grasslands. Plant Soil 240:299-310

    CAS  Google Scholar 

  • Del Val C, Barea J M, Azcón-Aguilar C (1999) Diversity of arbuscular mycorrhizal fungus popu-lations in heavy-metal-contaminated soils. Appl Environ Microbiol 65:718-723

    CAS  PubMed  Google Scholar 

  • Dickson S, Smith SE, Smith FA (1999) Characterization of two arbuscular mycorrhizal fungi in symbiosis with Allium porrum. Colonization, plant growth and phosphate uptake. New Phytol 144:163-172

    CAS  Google Scholar 

  • Dodd JC, Boddington CL, Rodriguez A, Gonzalez-Chavez C, Mansur I (2000) Mycelium of arbuscular mycorrhizal fungi (AMF) from different genera: form, function and detection. Plant Soil 226:131-151

    CAS  Google Scholar 

  • Dodd JC, Rosendahl S, Giovannetti M, Broome A, Lanfranco L, Walker C (1996) Inter-and intraspecific variation within the morphologically similar arbuscular mycorrhizal fungi Glomus mosseae and Glomus coronatum. New Phytol 133:113-122

    Google Scholar 

  • Douds DDJr., Millner PA (1999) Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. Agric. Ecosyst Environ 74:77-93

    Google Scholar 

  • Douds DDJr., Galvez L, Janke RR, Wagoner P (1995) Effect of tillage and farming system upon populations and distribution of vesicular-arbuscular mycorrhizal fungi. Agric Ecosyst Environ 52:111-118

    Google Scholar 

  • Douds DDJr., Nagahashi G, Pfeffer PE, Reider C, Kayser WM (2006) On-farm production of AM fungus inoculum in mixtures of compost-vermiculite. Bioresourc Technol 97:809-818

    CAS  Google Scholar 

  • Drew EA, Murray RS, Smith SE, Jakobsen I (2003) Beyond the rhizosphere: growth and function of arbuscular mycorrhizal external hyphae in sands of varying pore sizes. Plant Soil 251:105-114

    CAS  Google Scholar 

  • Driver JD, Holben WE, Rillig MC (2005) Characterization of glomalin as a hyphal wall compo-nent of arbuscular mycorrhizal fungi. Soil Biol Biochem 37:101-106

    CAS  Google Scholar 

  • Duponnois R, Plenchette C, Ba AM (2001) Growth stimulation of seventeen fallow leguminous plants inoculated with Glomus aggregatum in Senegal. Eur J Soil Biol 37:181-186

    Google Scholar 

  • El-Hassanin AS, Lynd JQ (1985) Soil fertility effects with tripartite symbiosis for growth, nodula-tion and nitrogenase activity of Vicia faba L. J Plant Nutr 8:491-504

    CAS  Google Scholar 

  • Evans DG, Miller MH (1988) Vesicular-arbuscular mycorrhizas and the soil-disturbance-induced reduction of nutrient absorption in maize. I. Causal relations. New Phytol 110:67-74

    Google Scholar 

  • Evans DG, Miller MH (1990) The role of the external mycelial network in the effect of soil distur-bance upon vesicular-arbuscular mycorrhizal colonization of maize. New Phytol 114:65-71

    Google Scholar 

  • Fairchild GL, Miller MH (1988) Vesicular-arbuscular mycorrhizas and the soil-disturbance-induced reduction of nutrient absorption in maize. II. Development of the effect. New Phytol 110:75-84

    Google Scholar 

  • Fairchild GL, Miller MH (1990) Vesicular-arbuscular mycorrhizas and the soil-disturbance-induced reduction of nutrient absorption in maize. New Phytol 114:641-650

    CAS  Google Scholar 

  • Feldmann F, Boyle C (1999) Weed mediated stability of arbuscular mycorrhizal effectiveness in maize monocultures. Angew Bot 73:1-5

    Google Scholar 

  • Franke-Snyder M, Douds DDJr, Galvez L, Philips JG, Wagoner P, Drinkwater L, Morton JB (2001) Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA. Appl Soil Ecol 16:35-48

    Google Scholar 

  • Frey B, Schuepp H (1992) Transfer of symbiotically fixed nitrogen from berseem (Trifolium alex-andrinum L.) to maize via vesicular-arbuscular mycorrhizal hyphae. New Phytol 122:447-454

    CAS  Google Scholar 

  • Galvez L, Douds DDJr, Drinkwater LE, Wagoner P (2001) Effect of tillage and farming system upon VAM fungus populations and mycorrhizas and nutrient uptake of maize. Plant Soil 228:299-308

    CAS  Google Scholar 

  • Gavito ME, Miller MH (1998a) Changes in mycorrhiza development in maize induced by crop management practices. Plant and Soil 198:185-192

    CAS  Google Scholar 

  • Gavito ME, Miller MH (1998b) Early phosphorus nutrition, mycorrhizae development, dry matter partitioning and yield of maize. Plant Soil 199:177-186

    CAS  Google Scholar 

  • George E, Marschner H, Jakobsen I (1995) Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Crit Rev Biotechnol 15:257-270

    Google Scholar 

  • Gianinazzi S, Vosátka M (2004) Inoculum of arbuscular mycorrhizal fungi for production systems: science meets business. Can J Bot 82: 1264-1271

    Google Scholar 

  • Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115-1122

    PubMed  Google Scholar 

  • Gollner M, Friedel JK, Freyer B (2004) Influence of different agricultural practices on the arbus-cular mycorrhiza in organic farming systems. In: Baar J and Josten E (eds) Applied plant research, WUR, Netherlands: role of mycorrhiza in sustainable land management. COST 8.38 Meeting, 26-27.02.2004, Vught, Netherlands

    Google Scholar 

  • Gollotte A, van Tuinen D, Atkinson D (2004) Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 14:111-117

    PubMed  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17-35

    Google Scholar 

  • Goss MJ, de Varennes A (2002) Soil disturbance reduces the efficacy of mycorrhizal associations for early soybean growth and N2 fixation. Soil Biol Biochem 34:1167-1173

    CAS  Google Scholar 

  • Goss MJ, Kay BD (2005) Soil aggregation. In: Wright SF, Zobel RW (eds) Roots and soil manage-ment: interactions between root and the soil. Agronomy Monograph No 48. ASA, CSSA, and SSSA, Madison, WI, USA, pp 163-180

    Google Scholar 

  • Graham JH (2001) What do root pathogens see in mycorrhizas? New Phytol 149:357-359

    Google Scholar 

  • Graham JH, Hodge NC, Morton JB (1995) Fatty acid methyl ester profiles for characterization ofglomalean fungi and their endomycorrhizae. Appl Environ Microbiol 61:58-64

    CAS  PubMed  Google Scholar 

  • Grant C, Bittman S, Montreal M, Plenchette C, Morel C (2005) Soil and fertilizer phosphorus: effects on plant P supply and mycorrhizal development. Can J Plant Sci 85:3-14

    Google Scholar 

  • Gryndler M, Larsen J, Hrselova H, Rezacova V, Gryndlerova H, Kubat J (2006) Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment. Mycorrhiza 16:159-166

    CAS  PubMed  Google Scholar 

  • Gupta V, Satyanarayana T, Garg S (2000) General aspects of mycorrhiza. In: Mukherji KG, Chamola BP, Singh J (eds) Mycorrhizal biology. Kluwer, Dordrecht, pp 27-44

    Google Scholar 

  • Habte M, Manjunath A (1992) Initial and residual toxicity of soil-applied thiram on the vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 2:25-31

    CAS  Google Scholar 

  • Harinikumar KM, Bagyaraj DJ (1988) Effect of crop rotation on native vesicular arbuscular mycorrhizal propagules in soil. Plant Soil 110:77-80

    Google Scholar 

  • Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbus-cular mycorrhizal fungi. New Phytol 153:335-344

    Google Scholar 

  • Hauggaard-Nielsen H, Jensen ES (2005) Facilitative root interactions in intercrops. Plant Soil 274:237-250

    CAS  Google Scholar 

  • He X, Critchley C, Bledsoe C (2003) Nitrogen transfer within and between plants through com-mon mycorrhizal networks (CMNs). Crit Rev Plant Sci 22:531-567

    Google Scholar 

  • Heggo A, Angle JS, Chaney RL (1990) Effects of vesicular-arbuscular mycorrhizal fungi on heavy metal uptake by soybeans. Soil Biol Biochem 22:865-869

    CAS  Google Scholar 

  • Hendrix W, Guo BZ, An ZQ (1995) Divergence of mycorrhizal fungal communities in crop pro-duction systems. Plant Soil 170: 131-140

    CAS  Google Scholar 

  • Hepper CM, Azcon-Aguilar C, Rosendahl S, Sen R (1988) Competition between three species of Glomus used as spatially separated introduced and indigenous mycorrhizal inocula for leek (Allium porrum L.). New Phytol 110:207-215

    Google Scholar 

  • Hepper CM, Sen R, Maskall CS (1986) Identification of vesicular-arbuscular mycorrhizal fungi in roots of leek (Allium porrum L.) and maize (Zea mays L.) on the basis of enzyme mobility during polyacrylamide gel electrophoresis. New Phytol 102:529-539

    Google Scholar 

  • Hetrick BAD, Wilson GWT, Cox TS (1993) Mycorrhizal dependence of modern wheat cultivars and ancestors: a synthesis. Can J Bot 71:512-518

    Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297-299

    CAS  PubMed  Google Scholar 

  • Holford ICR (1997) Soil phosphorus: Its measurement, and its uptake by plants. Aust J Soil Res 35:227-239

    CAS  Google Scholar 

  • Jakobsen I (1992) Phosphorus transport by external hyphae of vesicular-arbuscular mycorrhizas. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CABI, Wallingford, UK, pp 48-54

    Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225-234

    CAS  PubMed  Google Scholar 

  • Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders IR, Frossard E (2003) Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13:1164-1176

    Google Scholar 

  • Jansa J, Mozafar A, Frossard E (2005) Phosphorus acquisition strategies within arbuscular mycorrhizal fungal community of a single field site. Plant Soil 276:163-176

    CAS  Google Scholar 

  • Jayachandran K, Schwab AP, Hetrick BAD (1989) Mycorrhizal mediation of phosphorus availa-bility: synthetic iron chelate effects on phosphorus solubilization. Soil Sci Soc Am J 53:1701-1706

    Article  CAS  Google Scholar 

  • Johnson, NC (1993) Can fertilization of soil select less mutualistic mycorrhizae? Ecol Appl 3:749-757

    Google Scholar 

  • Johnson NC, Pfleger FL, Crookston RK, Simmons SR, Copeland PJ (1991) Vesicular-arbuscular mycorrhizas respond to corn and soybean cropping history. New Phytol 117: 657-663

    Google Scholar 

  • Johnson NC, Copeland PJ, Crookston RK, Pfleger FL (1992) Mycorrhizae: possible explanation for yield decline with continuous corn and soybean. Agron J 84:387-390

    Google Scholar 

  • Joner EJ, Jakobsen I (1995) Growth and extracellular phosphatase activity of arbuscular mycor-rhyzal hyphae as influenced by soil organic matter. Soil Biol Biochem 27:1153-1159

    CAS  Google Scholar 

  • Joner EJ, Magid J, Gahoonia TS, Jakobsen I (1995) P depletion and activity of phosphatases in the rhizosphere of mycorrhizal and non-mycorrhizal cucumber (Cucumis sativus L.) Soil Biol Biochem 27:1145-1151

    CAS  Google Scholar 

  • Joner EJ, van Aarle IM, Vosatka M (2000) Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae: a review. Plant Soil 226:199-210

    CAS  Google Scholar 

  • Jordan NR, Zhang J, Huerd S (2000) Arbuscular-mycorrhizal fungi: potential roles in weed man-agement. Weed Res 40:397-410

    Google Scholar 

  • Kabir Z (2005) Tillage or no-tillage: impact on mycorrhizae. Can J Plant Sci 85:23-29

    Google Scholar 

  • Kabir Z, Koide RT (2000) The effect of dandelion or a cover crop on mycorrhiza inoculum poten-tial, soil aggregation and yield of maize. Agric Ecosyst Environ 78:167-174

    Google Scholar 

  • Kabir Z, Koide RT (2002) Effect of autumn and winter mycorrhizal cover crops on soil properties, nutrient uptake and yield of sweet corn in Pennsylvania, USA. Plant Soil 238:205-215

    CAS  Google Scholar 

  • Kabir Z, O’Halloran IP, Fyles JW, Hamel C (1997a) Seasonal changes of arbuscular mycorrhizal fungi as affected by tillage practices and fertilization: hyphal density and mycorrhizal root colonization. Plant Soil 192:285-293

    CAS  Google Scholar 

  • Kabir Z, O’Halloran IP, Hamel C (1997b) Overwinter survival of arbuscular mycorrhizal hyphae is favored by attachment to roots but diminished by disturbance. Mycorrhiza 7:197-200

    Google Scholar 

  • Kabir Z, O’Halloran IP, Fyles JW, Hamel C (1998a) Dynamics of the mycorrhizal symbiosis of corn (Zea mays L.): effects of host physiology, tillage practice and fertilization on spatial dis-tribution of extra-radical mycorrhizal hyphae in the field. Agric Ecosyst Environ 68:151-163

    Google Scholar 

  • Kabir Z, O’Halloran IP, Widden P, Hamel C (1998b) Vertical distribution of arbuscular mycorrhizal fungi under corn (Zea mays L.) in no-till and conventional tillage systems. Mycorrhiza 8:53-55

    Google Scholar 

  • Kahiluoto, H (2004) Systems management of AM in sustainable agriculture the case of P supply. In: Baar J and Josten E (Eds) Programme and abstracts of the COST-Meeting role of mycorrhiza in sustainable land management. Applied Plant Research, WUR, Netherlands

    Google Scholar 

  • Kahiluoto H, Ketoja E, Vestberg M (2000) Promotion of utilization of arbuscular mycorrhiza through reduced P fertilization 1. Bioassays in a growth chamber. Plant Soil 227:191-206

    CAS  Google Scholar 

  • Kahiluoto H, Ketoja E, Vestberg M, Saarela I (2001) Promotion of AM utilization through reduced P fertilization 2. Field studies. Plant Soil 231:65-79

    CAS  Google Scholar 

  • Karasawa T, Arihara J, Kasahara, Y (2000) Effects of previous crops on arbuscular mycorrhizal forma-tion and growth of maize under various soil moisture conditions. Soil Sci Plant Nutr 46:53-60

    Google Scholar 

  • Karasawa T, Kasahara Y, Takebe M (2001) Variable response of growth and arbuscular mycorrhizal colonization of maize plants to preceding crops in various types of soils. Biol Fertil Soils 33:286-293

    CAS  Google Scholar 

  • Karasawa T, Kasahara Y, Takebe M (2002) Differences in growth responses of maize to preceding cropping caused by fluctuation in the population of indigenous arbuscular mycorrhizal fungi. Soil Biol Biochem 34:851-857

    CAS  Google Scholar 

  • Kesava RPS, Tilak KVBR, Arunachalam V (1990) Genetic variation for VA mycorrhiza-depend-ent phosphate mobilisation in groundnut (Arachis hypogaea L.). Plant Soil 122:137-142

    Google Scholar 

  • Kjøller R, Rosendahl S (2000) Effects of fungicides on arbuscular mycorrhizal fungi: differential responses in alkaline phosphatase activity of external and internal hyphae. Biol Fertil Soils 31:361-365

    Google Scholar 

  • Klironomos JN, Hart MM (2002) Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 12:181-184

    PubMed  Google Scholar 

  • Koide RT, Kabir Z (2000) Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyze organic phosphate. New Phytol 148:511-517

    CAS  Google Scholar 

  • Koide RT, Li M (1990) On host regulation of the vesicular-arbuscular mycorrhizal symbiosis. New Phytol 114:59-74

    Google Scholar 

  • Kothari SK, Marschner H, Römheld V (1990) Direct and indirect effects of VA mycorrhizial fungi and rhizosphere microorganisms on acquisition of mineral nutrients by maize (Zea mays) in a calcareous soil. New Phytol 116:637-645

    CAS  Google Scholar 

  • Lal R, Reicosky DC, Hanson JD (2007) Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil Tillage Res 93: 1-12

    Google Scholar 

  • Lekberg Y, Koid RT, Twomlow SJ (2008) Effect of agricultural management practices on arbus-cular mycorrhizal fungal abundance in low-input cropping systems of southern Africa: a case study from Zimbabwe. Biol Fertil Soils DOI 10.1007/s00374-008-0274-6

    Google Scholar 

  • Li XL, George E, Marchner H (1991) Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant Soil 136:41-48

    Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331-336

    CAS  Google Scholar 

  • Lu S, Miller MH (1989) The role of VA mycorrhizae in the. absorption of P and Zn by maize in field and growth. chamber experiments. Can J Soil Sci 69:97-109

    Article  Google Scholar 

  • Manjunath A, Bagyaraj DJ (1984) Effects of fungicides on mycorrhizal colonization and growth of onion. Plant Soil 80:147-150

    CAS  Google Scholar 

  • Martins MA, Read DJ (1997) The effects of disturbance on the external mycelium of arbuscular mycorrhizal fungi on plant growth. Pesqui Agropecu Bras 32:1183-1189

    Google Scholar 

  • Mathimaran N, Ruh R, Vullioud P, Frossard E, Jansa J (2005) Glomus intraradices dominates arbus-cular mycorrhizal communities in a heavy textured agricultural soil. Mycorriza 16:61-66

    CAS  Google Scholar 

  • McGonigle TP, Fitter AH (1990) Ecological specificity of vesicular-arbuscular mycorrhizal asso-ciations. Mycol Res 94:120-122

    Google Scholar 

  • McGonigle TP, Miller MH (1996a) Development of fungi below ground in association with plants growing in disturbed and undisturbed soils. Soil Biol Biochem 28:263-269

    CAS  Google Scholar 

  • McGonigle TP, Miller MH (1996b) Mycorrhizae phosphorus absorption and yield of maize in response to tillage. Soil Sci Soc Am J 60:1856-1861

    CAS  Google Scholar 

  • McGonigle TP, Miller MH (2000) The inconsistent effect of soil disturbance on colonization of roots by arbuscular mycorrhizal fungi a test of the inoculum density hypothesis. Appl Soil Ecol 14:147-155

    Google Scholar 

  • McGonigle TP, Miller MH, Young D (1999) Mycorrhizae crop growth and crop phosphorus nutri-tion in maize-soybean rotations given various tillage treatments. Plant Soil 210:33-42

    CAS  Google Scholar 

  • McGonigle TP, Yano K, Shinhama T (2003) Mycorrhizal phosphorus enhancement of plants in undisturbed soil differs from phosphorus uptake stimulation by arbuscular mycorrhizae over non-mycorrhizal controls. Biol Fertil Soils 37:268-273

    Google Scholar 

  • Menge JA (1982) Effect of soil fumigants and fungicides on vesicular-arbuscular fungi. Phytopathology 72:1125-1132

    Google Scholar 

  • Menge JA, Steirle D, Bagy Araj DJ, Johnson ELV, Leonard RT (1978) Phosphorus concentrations in plants responsible for inhibition of mycorrhizal infection. New Phytol. 80:575-578

    CAS  Google Scholar 

  • Miller MH, McGonigle T, Addy H (1994) An economic approach to evaluate the role of mycorrhizas in managed ecosystems. Plant Soil 159:27-35

    Google Scholar 

  • Miller MH (2000) Arbuscular mycorrhizal and the phosphorus nutrition of maize: a review of Guelph studies. Can J Plant Sci 80:47-52

    CAS  Google Scholar 

  • Miller RM, Jastrow JD (1990) Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biol Biochem 22:579-584

    Google Scholar 

  • Miranda JCC, Vilela L, de Miranda LN (2005) Dynamics and contribution of arbuscular mycorrhiza in culture systems with crop rotation. Pesqui Agropecu Bras 40:1005-1014

    Google Scholar 

  • Mohandas S, Gowda MJC, Manamohan M (2004) Popularization of arbuscular mycorrhizal (AM) inoculum production and application on-farm. Acta Hort (ISHS) 638:279-283

    Google Scholar 

  • Mollier A, Pellerin S (1999) Maize root system growth and development as influenced by phos-phorus deficiency. J Exp Bot 50:487-497

    CAS  Google Scholar 

  • Morton J B, Benny G L (1990) Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon 37:471-491

    Google Scholar 

  • Morton JB, Bentivenga SP (1994) Levels of diversity in endomycorrhizal fungi (Glomales, Zygomycetes) and their role in defining taxonomic and nontaxonomic groups. Plant Soil 159: 47-59

    Google Scholar 

  • Moyer-Henry KA, Burton JW, Israel D, Rufty T (2006) Nitrogen transfer between plants: A N-15 natural abundance study with crop and weed species. Plant Soil 282:7-20.

    CAS  Google Scholar 

  • Mozafar A, Anken T, Ruh R, Frossard E (2000) Tillage intensity, mycorrhizal and nonmycorrhizal fungi, and nutrient concentrations in maize, wheat, and canola. Agron J 92:1117-1124

    Article  CAS  Google Scholar 

  • Munkvold L, Kjoller R, Vestberg M, Rosendahl S, Jakobsen I. (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phythol 164:357-364

    Google Scholar 

  • Niemi M, Eklund M (1988) Effect of VA mycorrhizae and bark ash on the growth and N2-fixation of two legumes. Symbiosis 6:167-180

    Google Scholar 

  • Nogueira MA, Cardoso EJBN (2002) Interacções microbianas na disponibilidade e absorção de manganês por soja. Pesq Agropec Bras 37:1605-1612

    Google Scholar 

  • Nogueira MA, Magalhães GC, Cardoso EJBN (2004) Manganese toxicity in mycorrhizal and phosphorus-fertilized soybean plants. J Plant Nutr 27:141-156

    CAS  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Appl Environ Microbiol 69: 2816-2824

    CAS  PubMed  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2004) Impact of conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. In: Baar J and Josten E (eds) Programme and abstracts of the COST-Meeting role of mycorrhiza in sustainable land management. Applied Plant Research, WUR, Netherlands

    Google Scholar 

  • Oliveira RS, Dodd JC, Castro PML (2001) The mycorrhizal status of phragmites australis in sev-eral polluted soils and sediments of an industrialised region of northern Portugal. Mycorrhiza 10:241-247

    CAS  Google Scholar 

  • Ortas I, Akpinar C (2006) Response of kidney bean to arbuscular mycorrhizal inoculation mycorrhizal dependency in P and Zn deficient soils. Acta Agric Scan 56:101-109

    CAS  Google Scholar 

  • Pandey R, Singh B, Nair TVR (2005) Impact of arbuscular-mycorrhizal fungi on phosphorus efficiency of wheat, rye, and triticale. J Plant Nutr 28:1867-1876

    CAS  Google Scholar 

  • Plenchette C (1989) Potentiel infectieux mycorhizogene du sol des parcelles du dispositif Deherain. Rend Séances Acad Agric Fr 75:23-29

    Google Scholar 

  • Plenchette C, Clermont-Dauphin C, Meynard JM, Fortin JA (2005) Managing arbuscular mycorrhizal fungi in cropping systems. Can J Plant Sci 85:31-40

    Google Scholar 

  • Read DJ, Koveheri HK, Hodson J (1976) Vesicular-arbuscular mycorrhiza in natural vegetation systems. New Phytol 77:641-653

    Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920-1921

    CAS  PubMed  Google Scholar 

  • Richardson AE (1994) Soil microorganisms and phosphorus availability. In: Pankhurst CE, Doube BM, Gupta VVSR, Grace PR (eds) Soil biota: management in sustainable farming systems. CSIRO, Australia, pp 50-62

    Google Scholar 

  • Rillig MC, Mummey, DL (2006) Mycorrhizas and soil structure. New Phytol 171:41-53

    CAS  PubMed  Google Scholar 

  • Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS (2001) Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233:167-177

    CAS  Google Scholar 

  • Rivera-Becerril F, Calantzis C, Turnau K, Caussanel JP, Belimov AA, Gianinazzi S, Strasser RJ, Gianinazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53:1177-1185

    CAS  PubMed  Google Scholar 

  • Rovira AD (1994) The effect of farming practices on the soil biota. In: Pankhurst CE, Doube BM, Gupta VVSR, Grace PR (eds) Soil biota: management in sustainable farming systems. CSIRO, Australia, pp 81-87

    Google Scholar 

  • Ryan MH, Angus JF, (2003) Arbuscular mycorrhizae in wheat and field pea crops on a low P soil: increased Zn_uptake but no increase in P-uptake or yield. Plant Soil 250:225-239

    CAS  Google Scholar 

  • Saito M, Marumoto T (2002) Inoculation with arbuscular mycorrhizal fungi: the status quo in Japan and the future prospects. Plant Soil 244:273-279

    CAS  Google Scholar 

  • Salem SF, Dobolyi C, Helyes L, Pçk, Z, Dimçny J (2003) Side-effect of benomyl and captan on arbuscular mycorrhiza formation in tomato. Acta Hort (ISHS) 613:243-246

    CAS  Google Scholar 

  • Sanders FE, Tinker PB (1973) Phosphate flow into mycorrhizal roots. Pestic Sci 4: 385-395

    CAS  Google Scholar 

  • Sannazzaro AI, Ruiz OA, Alberto EO, Menendez AB (2006) Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant Soil 285:279-287

    CAS  Google Scholar 

  • Schreiner RP, Bethlenfalvay GJ (1997) Mycorrhizae, biocides, and biocontrol. 3. Effects of three different fungicides on developmental stages of three AM fungi. Biol Fertil Soils 24:18-26

    CAS  Google Scholar 

  • Schreiner RP, Ivors KL, Pinkerton JN (2001) Soil solarization reduces arbuscular mycorrhizal fungi as a consequence of weed suppression. Mycorrhiza 11:273-277

    CAS  Google Scholar 

  • Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501-515

    PubMed  Google Scholar 

  • Scullion J, Eason WR, Scott EP (1998) The effectivity of arbuscular mycorrhizal fungi from high input conventional and organic grassland and grass-arable rotations. Plant Soil 204: 243-254

    CAS  Google Scholar 

  • Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ), Eschborn, Germany.

    Google Scholar 

  • Simon L, Bousquet J, Lévesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67-69

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, London Sorensen JN, Larsen J, Jakobsen I (2005) Mycorrhiza formation and nutrient concentration in leeks (Allium porrum) in relation to previous crop and cover crop management on high P soils. Plant Soil 273:101-114

    Google Scholar 

  • Steinberg PD, Rillig MC (2003) Differential decomposition of arbuscular mycorrhizal fungal hyphae and glomalin. Soil Biol Biochem 35:191-194

    CAS  Google Scholar 

  • Stribley DP (1987) Mineral nutrition. In: Safir GR (Ed) Ecophysiology of VA mycorrhizae plants. CRC, Boca Raton, Fla., pp 59-70

    Google Scholar 

  • Subhan S, Sharmila P, Pardha Saradhi P (1998) Glomus fasciculatum alleviates transplantation shock of micropropagated Sesbania sesban. Plant Cell Rep 17:268-272

    CAS  Google Scholar 

  • Tawaraya K, Naito M, Wagatsuma T (2006) Solubilization of insoluble inorganic phosphate by hyphal exudates of arbuscular mycorrhizal fungi. J Plant Nutr 29:657-665

    CAS  Google Scholar 

  • Thomas RS, Franson RL, Bethlenfalvay GJ (1993) Separation of vesicular-arbuscular mycorrhizal fungus and root effects on soil aggregation. Soil Sci Soc Am J 57:77-81

    Article  Google Scholar 

  • Tisdall JM (1991) Fungal hyphae and structural stability of soil. Aust J Soil Res 29:729-743

    Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33:141-163

    CAS  Google Scholar 

  • Toth R, Toth D, Stark D, Smith DR (1990) Vesicular-Abucular mycorrhizal colonization in Zea mays affected by breeding for resistance to fungal pathogens. Can J Bot 68: 1039-1044

    Google Scholar 

  • Troeh ZI, Loynachan TE (2003) Endomycorrhizal fungal survival in continuous corn, soybean, and fallow. Agron J 95:224-230

    Article  Google Scholar 

  • Turnau K, Ryszka P, Gianinazzi-Pearson V, van Tuinen D (2001) Identification of arbuscular mycorrhizal fungi in soils and roots of plants colonizing zinc wastes in southern Poland. Mycorrhiza 10:169-174

    CAS  Google Scholar 

  • van Kessel C, Singleton PW, Hoben HJ (1985) Enhanced N-transfer from a soybean to maize by vesicular arbuscular mycorrhizal (VAM) fungi. Plant Physiol 79:562-563

    PubMed  Google Scholar 

  • van Tuinen D, Charvolin E, Gianinazzi-Pearson V (2004) Ribosomal sequences as a tool to study and monitor arbuscular mycorrhizal fungi. In: Baar J and Josten E (eds) Programme and abstracts of the COST -Meeting role of mycorrhiza in sustainable land management. Applied Plant Research, WUR, Netherlands

    Google Scholar 

  • Vandenkoornhuyse P, Husband R, Fitter AH, Young JPW (2002) Arbuscular mycorrhizal com-munity composition associated with two plant species in a grassland ecosystem. Mol Ecol 11: 1555-1564

    CAS  PubMed  Google Scholar 

  • Vestberg M, Saari K, Kukkonen S, Hurme T (2005) Mycotrophy of crops in rotation and soil amendment with peat influence the abundance and effectiveness of indigenous arbuscular mycorrhizal fungi in field soil. Mycorrhiza 15:447-458

    CAS  PubMed  Google Scholar 

  • Vivekanandan M, Fixen PE (1991) Cropping systems effects on mycorrhizal colonization, early growth, and phosphorus uptake of corn. Soil Sci Soc Am J 55:136-140

    Article  CAS  Google Scholar 

  • von Alten HA, Lindemann A, Schönbeck F (1993) Stimulation of vesicular-arbuscular mycorrhiza by fungicides and rhizosphere bacteria. Mycorrhiza 2: 167-173

    Google Scholar 

  • Vyas SC, Vyas S (2000) Effect of agrochemicals on mycorrhizae. In: Mukerji KG, Chamola BP, Singh J (eds) Mycorrhizal biology. Kluwer, New York pp 289-327

    Google Scholar 

  • Wellings NP, Wearing AH, Thompson JP (1991) Vesicular-arbuscular mycorrhizae (VAM) improve phosphorus and zinc nutrition and growth of Pigeopea in a vertisol. Aust J Agric Res 42: 835-845

    Google Scholar 

  • Wright SF, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Science 161:575-586

    CAS  Google Scholar 

  • Wright SF, Starr JL, Paltineanu IC (1999) Changes in aggregate stability and concentration of glomalin during tillage management transition. Soil Sci Soc Am J 63:1825-1829

    Article  CAS  Google Scholar 

  • Yamato M (2004) Morphological types of arbuscular mycorrhizal fungi in roots of weeds on vacant land. Mycorrhiza 14:127-131

    PubMed  Google Scholar 

  • Yano K, Takaki M (2005) Mycorrhizal alleviation of acid soil stress in the sweet potato (Ipomoea batatas). Soil Biol and Biochem 37:1569-1572

    CAS  Google Scholar 

  • Zhu YG, Smith SE, Barritt AR, Smith FA (2001) Phosphorus (P) efficiencies and mycorrhizal responsiveness of historical and modern wheat cultivars. Plant and Soil 237:249-255

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Brito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brito, I., Goss, M.J., de Carvalho, M., van Tuinen, D., Antunes, P.M. (2008). Agronomic Management of Indigenous Mycorrhizas. In: Varma, A. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78826-3_19

Download citation

Publish with us

Policies and ethics