Ultraviolet (UV) A and (UV) B Phototherapy

Key Features

  • Narrow-band UVB was developed based on the phototherapy action spectrum.

  • Mechanisms of action: induction of apoptosis and immune suppression.

  • Improved targeting achieved using 308-nm excimer light/laser phototherapy.

  • Low risk of photocarcinogenesis.


Atopic Dermatitis Drain Lymph Node Localize Scleroderma Serum Eosinophil Cationic Protein Moderate Atopic Dermatitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Krutmann J, Morita A (2003) Therapeutic photomedicine phototherapy. In: Freedberg IM, Eisen AZ, Wolff K, Austen KF, Goldsmith LA, Katz SI (eds) Fitzpatrick's dermatology in general medicine. McGraw Hill, New YorkGoogle Scholar
  2. 2.
    Krutmann J, Morita A, Elmets CA (2001) Mechanism of photo(chemo)therapy. In: Krutmann J, Hönigsmann H, Elmets CA, Bergstresser PR (eds) Dermatological phototherapy and photodiagnostic methods. Springer, New York, p 54CrossRefGoogle Scholar
  3. 3.
    Parrish JA, Jaenicke KF (1980) Action spectrum for phototherapy of psoriasis. J Invest Dermatol 76:359–362CrossRefGoogle Scholar
  4. 4.
    Walters IB, Burack LH, Coven TR et al (1999) Suberythe-mogenic narrow-band UVB is markedly more effective than conventional UVB in treatment of psoriasis vulgaris. J Am Acad Dermatol 40:893–900PubMedCrossRefGoogle Scholar
  5. 5.
    Ozawa M, Ferenczi K, Kikuchi T et al (1999) 312-nanome-ter ultraviolet B light (narrow-band UVB) induces apopto-sis of T cells within psoriatic lesions. J Exp Med 189:711–718PubMedCrossRefGoogle Scholar
  6. 6.
    Shintani Y, Morita A (2008). Narrowband UVB radiation suppresses contact hypersensitivity. Photodermatol Photo-immunol Photomed 24:32–37CrossRefGoogle Scholar
  7. 7.
    Sakaguchi S (2004) Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562PubMedCrossRefGoogle Scholar
  8. 8.
    Shevach EM (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2:389–400PubMedGoogle Scholar
  9. 9.
    Loser K, Mehling A, Loeser S et al (2006) Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat Med 12:1372–1379PubMedCrossRefGoogle Scholar
  10. 10.
    Schwarz A, Maeda A, Kernebeck K, van Steeg H, Beissert S, Schwarz T (2005) Preventionof UV radiation-induced immunosuppression by IL-12 is dependent on DNArepair. J Exp Med 201:173–179PubMedCrossRefGoogle Scholar
  11. 11.
    Moodycliffe AM, Kimber I, Norval M (1992) The effect of ultraviolet B irradiation and urocanic acid isomers on dendritic cell migration. Immunology 77:394–399PubMedGoogle Scholar
  12. 12.
    Mizuno K, Okamoto H, Horio T (2004) Ultraviolet B radiation suppresses endocytosis, subsequent maturation, and migration activity of Langerhans cell-like dendritic cells. J Invest Dermatol 122:300–306PubMedCrossRefGoogle Scholar
  13. 13.
    Yamazaki S, lyoda T, Tarbell K et al (2003) Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J Exp Med 198:235–247PubMedCrossRefGoogle Scholar
  14. 14.
    Ghoreishi M, Dutz JP (2006) Tolerance induction by trans-cutaneous immunization through ultraviolet-irradiated skin is transferable through CD4 + CD25+ T regulatory cells and is dependent on host-derived IL-10. J Immunol 176:2635–2644PubMedGoogle Scholar
  15. 15.
    Novak Z, Berces A, Konto G et al (2004) Efficacy of differ-enl UV-emitting light sources in the induction of T-cell apoptosis. Photochem Photobiol 79:434–439PubMedCrossRefGoogle Scholar
  16. 16.
    George SA, Bilsland DJ, Johnson BE, Ferguson J (1993) Narrow-band (TL-01) UVB air conditioned phototherapy for chronic severe adult atopic dermatitis. Br J Dermatol 128:49–56PubMedCrossRefGoogle Scholar
  17. 17.
    Reynolds NJ, Franklin V, Gray JC, Diffey BL, Farr PM (2001) Narrow-band ultraviolet B and broad-band ultraviolet A phototherapy in adult atopic eczema: a randomised controlled trial. Lancet 357:2012–2016PubMedCrossRefGoogle Scholar
  18. 18.
    Bonis B, Kemeny L, Dobozu A et al (1997) 308 nm UVB excimer laser for psoriasis. Lancet 350:1522PubMedCrossRefGoogle Scholar
  19. 19.
    Aubin F, Vigin M, Puzenat E et al (2005) Evaluation of a novel monochromaticexcimer light delivery system in dermatology: a pilot study in different chronic localized dermatoses. Br J Dermatol 152:99–103PubMedCrossRefGoogle Scholar
  20. 20.
    Man I, Crombie IK, Dawe RS et al (2005) The photocarcino-genic risk of narrowband UVB(TL-Ol) phototherapy: early follow-up data. Br J Dermatol 152:755–757PubMedCrossRefGoogle Scholar
  21. 21.
    Morita A, Werfel T, Stege H et al (1997) Evidence that singlet oxygen-induced human T helper cell apoptosis is the basic mechanism of ultraviolet-A radiation phototherapy. J Exp Med 186:1763–1768PubMedCrossRefGoogle Scholar
  22. 22.
    Krutmann J, Czech W, Dicpgen T et al (1992) High-dose UVA1 therapy in the treatment of patients with atopic dermatitis. J Am Acad Dermatol 26:225–230PubMedCrossRefGoogle Scholar
  23. 23.
    Krutmann J, Morita A (2005) Phototherapy for atopic dermatitis. In: Ring J, Ruzicka T, Przybilla B (eds) Handbook of atopic eczema, 2nd edn. Springer, Heidelberg, pp 539–542Google Scholar
  24. 24.
    Yin L, Morita A, Tsuji T (2003) The crucial role of TGF-beta in the age-related alterations induced by ultraviolet A Irradiation. J Invest Dermatol 120:703–705PubMedCrossRefGoogle Scholar
  25. 25.
    Herrmann G, Wlaschek M, Lange TS et al (1993) UVA Irradiation stimulates the synthesis of various matrix metal-loproteinases (MMPs). Exp Dermatol 2:92–97PubMedCrossRefGoogle Scholar
  26. 26.
    Yin L, Yamauchi R, Tsuji T, Krutmann J, Morita A (2003) The expression of matrixmetalloproteinase-1 mRNA induced by ultraviolet AI (340–400nm) is phototherapy relevant to the glutathione (GAH) content in skin fibroblasts of systemic sclerosis. J Dermatol 30:173–180PubMedGoogle Scholar
  27. 27.
    Sakakibara N, Morita A (2008) Ultrastructural changes induced in cutaneous collagen by UVA l and PUVA therapy in systemic sclerosis. J Dermatol 35:63–69PubMedCrossRefGoogle Scholar
  28. 28.
    Chizzolini C, Rezzonico R, Ribbens C et al (1998) Inhibition of type I collagen production by dermal fibroblasts upon contact with activated T cells: different sensitivity to inhibition between systemic sclerosis and control fibroblast. Arthritis Rheum 41:2039–2047PubMedCrossRefGoogle Scholar
  29. 29.
    Scharffetter K, Wlaschek M, Hogg A et al (1999) U VA irradiation induces collagenase in human dermal fibroblasts in vitro and in vivo. Arch Dermatol Res 283:506–511CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Geriatric and Environmental DermatologyNagoya City University Graduate School of Medical SciencesMizuho-kuJapan

Personalised recommendations