Skip to main content

On Injective Colourings of Chordal Graphs

  • Conference paper
LATIN 2008: Theoretical Informatics (LATIN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4957))

Included in the following conference series:

Abstract

We show that one can compute the injective chromatic number of a chordal graph G at least as efficiently as one can compute the chromatic number of (G − B)2, where B are the bridges of G. In particular, it follows that for strongly chordal graphs and so-called power chordal graphs the injective chromatic number can be determined in polynomial time. Moreover, for chordal graphs in general, we show that the decision problem with a fixed number of colours is solvable in polynomial time. On the other hand, we show that computing the injective chromatic number of a chordal graph is NP-hard; and unless NP = ZPP, it is hard to approximate within a factor of n 1/3 − ε, for any ε> 0. For split graphs, this is best possible, since we show that the injective chromatic number of a split graph is \(\sqrt[3]{n}\)-approximable. (In the process, we correct a result of Agnarsson et al. on inapproximability of the chromatic number of the square of a split graph.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnarsson, G., Greenlaw, R., Halldorsson, M.: On Powers of Chordal Graphs and Their Colorings. Congress Numerantium 100, 41–65 (2000)

    MathSciNet  Google Scholar 

  2. Bodlaender, H.L., Kloks, T., Tan, R.B., van Leeuwen, J.: Approximations for λ-Coloring of Graphs. The Computer Journal 47, 193–204 (2004)

    Article  MATH  Google Scholar 

  3. Calamoneri, T.: The L(h,k)-Labelling Problem: A Survey and Annotated Bibliography. The Computer Journal 49, 585–608 (2006)

    Article  Google Scholar 

  4. Diestel, R.: Graph Theory, 3rd edn. Graduate Texts in Mathematics, vol. 173. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  5. Ekim, T., Hell, P., Stacho, J., de Werra, D.: Polarity of Chordal Graphs. Discrete Applied Mathematics (to appear)

    Google Scholar 

  6. Farber, M.: Characterizations of strongly chordal graphs. Discrete Mathematics 43, 173–189 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feder, T., Hell, P., Klein, S., Nogueira, L.T., Protti, F.: List matrix partitions of chordal graphs. Theoretical Computer Science 349, 52–66 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Feige, U., Killian, J.: Zero Knowledge and the Chromatic Number. Journal of Computer and System Sciences 57, 187–199 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fiala, J., Kratochvíl, J.: Partial covers of graphs. Discussiones Mathematicae Graph Theory 22, 89–99 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  11. Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM Journal on Discrete Mathematics 5, 586–595 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hahn, G., Kratochvíl, J., Širáň, J., Sotteau, D.: On the injective chromatic number of graphs. Discrete Mathematics 256, 179–192 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hell, P., Klein, S., Nogueira, L.T., Protti, F.: Partitioning chordal graphs into independent sets and cliques. Discrete Applied Mathematics 141, 185–194 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jensen, T.R., Toft, B.: Graph coloring problems. Wiley Interscience Series in Discrete Mathematics. Wiley, New York (1995)

    MATH  Google Scholar 

  15. Kráľ, D.: Coloring Powers of Chordal Graphs. SIAM Journal on Discrete Mathematics 18, 451–461 (2005)

    Google Scholar 

  16. Laskar, R., Shier, D.: On powers and centers of chordal graphs. Discrete Applied Mathematics 6, 139–147 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Robertson, N., Sanders, D.P., Seymour, P., Thomas, R.: Efficiently four-coloring planar graphs. In: Proceedings of the twenty-eighth annual ACM symposium on Theory of computing (STOC), pp. 571–575.

    Google Scholar 

  18. J. Stacho: Ph.D. Thesis, Simon Fraser University (2008)

    Google Scholar 

  19. Tarjan, R.: Decomposition by clique separators. Discrete Mathematics 55, 221–232 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. West, D.: Introduction to Graph Theory. Prentice Hall, Englewood Cliffs (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eduardo Sany Laber Claudson Bornstein Loana Tito Nogueira Luerbio Faria

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hell, P., Raspaud, A., Stacho, J. (2008). On Injective Colourings of Chordal Graphs. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds) LATIN 2008: Theoretical Informatics. LATIN 2008. Lecture Notes in Computer Science, vol 4957. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78773-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78773-0_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78772-3

  • Online ISBN: 978-3-540-78773-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics