Skip to main content

Application of Discrete Molecular Dynamics to Protein Folding and Aggregation

  • Chapter
Aspects of Physical Biology

Part of the book series: Lecture Notes in Physics ((LNP,volume 752))

Abstract

With the rapid increase in computational speed and memory, simulations of proteins and other biological polymers begin to gain predictive power. However, in order to simulate a folding trajectory of a moderate size protein or an aggregation process of a large number of peptides, traditional molecular dynamics methods based on explicit solvent and accurate force field models still must gain several orders of magnitude in speed. Under these circumstances, simplified models which capture the essential features of the system under study may shed light on the problem in question. One of these simplified methods is discrete molecular dynamics (DMD). DMD replaces the interaction potentials between atoms and covalent bonds by discontinuous step functions. This simplification as well as coarse graining of the model (replacing groups of atoms by one effective bead) and replacing the effect of solvent by varying the strength of inter-bead interactions can speed up simulations sufficiently to generate many folding–unfolding events and to track the aggregation of many peptides. This increase in speed is gained mainly due to the ballistic motion of either secondary structures of the protein or individual peptides. This ballistic motion is a characteristic feature of the DMD method. This chapter will review successes and failures of the DMD method in protein folding and aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Smith: Nature 426, 883 (2003)

    Article  ADS  Google Scholar 

  2. C. M. Dobson: Nature 426, 884 (2003)

    Article  ADS  Google Scholar 

  3. D. J. Selkoe: Nature 426, 900 (2003)

    Article  ADS  Google Scholar 

  4. B. J. Alder, T. E. Wainwright: J. Chem. Phys. 31, 459 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  5. M. R. Sadr-Lahijany, A. Scala, S. V. Buldyrev, H. E. Stanley: Phys. Rev. Lett. 81, 4895 (1998)

    Article  ADS  Google Scholar 

  6. G. Franzese, G. Malescio, A. Skibinsky, S. V. Buldyrev, H. E. Stanley: Nature 409, 692 (2001)

    Article  ADS  Google Scholar 

  7. S. V. Buldyrev, H. E. Stanley: Physica A 330, 124 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Skibinsky, S. V. Buldyrev, G. Franzese, G. Malescio, H. E. Stanley: Potentials, Phys. Rev. E 69, 61206 (2004)

    ADS  Google Scholar 

  9. P. Kumar, S. V. Buldyrev, F. Sciortino, E. Zaccarelli, H. E. Stanley: Theory and simulation Phys. Rev. E 72, 021501 (2005)

    MathSciNet  Google Scholar 

  10. Z. Yan, S. V. Buldyrev, N. Giovambattista, H. E. Stanley: Phys. Rev. Lett. 95, 130604 (2005)

    Article  ADS  Google Scholar 

  11. P. A. Netz, S. V. Buldyrev, M. C. Barbosa, H. E. Stanley: Phys. Rev. E 73, 061504 (2006)

    Article  ADS  Google Scholar 

  12. L. Xu, S. V. Buldyrev, C. A. Angell, H. E. Stanley: Phys. Rev. E 74, 031108 (2006)

    Article  ADS  Google Scholar 

  13. D. C. Rapaport: J. Phys. A 11, L213 (1978)

    Google Scholar 

  14. D. C. Rapaport: J. Chem. Phys. 71, 3299 (1979)

    Article  ADS  Google Scholar 

  15. Y. Zhou, C. K. Hall, M. Karplus: Phys. Rev. Lett. 77, 2822 (1996)

    Article  ADS  Google Scholar 

  16. Y. Zhou, M. Karplus, J. M. Wichert, C. K. Hall: J. Chem. Phys. 107, 10691 (1997).

    Article  ADS  Google Scholar 

  17. S. W. Smith, C. K. Hall, B. D. Freeman: J. Comp. Phys. 134, 16 (1997)

    Article  MATH  ADS  Google Scholar 

  18. N. V. Dokholyan, E. Pitard. S. V. Buldyrev, H. E. Stanley: Phys. Rev. E 65, R030801 (2002)

    Article  ADS  Google Scholar 

  19. S. V. Buldyrev, P. Kumar, P. G. Debenedetti, P. J. Rossky, and H. E. Stanley, Proc. Natl. Acad. Sci. USA 101, 21077 (2007).

    Google Scholar 

  20. G. Foffi, K. A. Dawson, S. V. Buldyrev, F. Sciortino, E. Zaccarelli, P. Tartaglia: Phys. Rev. E 65, 050802 (2002)

    Article  ADS  Google Scholar 

  21. E. Zaccarelli, S. V. Buldyrev, E. La Nave, A. J. Moreno, I. Saika-Voivod, F. Sciortino, P. Tartaglia: Phys. Rev. Lett. 94, 218301 (2005)

    Article  ADS  Google Scholar 

  22. A. J. Moreno, S. V. Buldyrev, E. La Nave, I. Saika-Voivod, F. Sciortino, P. Tartaglia, E. Zaccarelli: Phys. Rev. Lett. 95, 157802 (2005)

    Article  ADS  Google Scholar 

  23. C. Davis, H. Nie, N. V. Dokholyan: Phys. Rev. E, 75, 051921 (2007)

    Article  ADS  Google Scholar 

  24. S. Sharma, F. Ding, N. V. Dokholyan: Biophysical Journal, 92, 1457 (2007)

    Article  ADS  Google Scholar 

  25. F. Ding, N. V. Dokholyan: Trends Biotech. 23, 450 (2005).

    Article  Google Scholar 

  26. B. Urbanc, J. M. Borreguero, L. Cruz, H. E. Stanley: Methods in Enzymology 412, 314 (2006).

    Article  Google Scholar 

  27. A. Yu. Grosberg, A. R. Khokhlov: Giant Molecules (Academic Press, 1997)

    Google Scholar 

  28. Center for Polymer Studies, Boston University: Virtual Molecular Dynamics Laboratory, http://cps.bu.edu/education/vmdl/ (2007)

    Google Scholar 

  29. D. C. Rapaport: J. Comput. Phys. 34, 184 (1980)

    Article  ADS  Google Scholar 

  30. M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1989)

    Google Scholar 

  31. D. C. Rapaport: The Art of Molecular Dynamics Simulation (Cambridge University Press: Cambridge, 1997)

    Google Scholar 

  32. D. Frenkel, B. Smit: Understanding Molecular Simulation: From Algorithms to Applications (Academic, San Diego, 1996)

    MATH  Google Scholar 

  33. A. Donev, S. Torquato, F. H. Stillinger: J. Comp. Phys. 202, 737 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. A. Donev, S. Torquato, F. H. Stillinger: J. Comp. Phys. 202, 765 (2005)

    MATH  ADS  MathSciNet  Google Scholar 

  35. C. De Michele, A. Scala, R. Schilling, F. Sciortino: J. Chem. Phys. 124, 104509, (2006)

    Article  ADS  Google Scholar 

  36. C. De Michele, S. Gabrielli, P. Tartaglia, F. Sciortino: J. Phys. Chem. B 110, 8064 (2006)

    Article  Google Scholar 

  37. Y. Zhou, M. Karplus: Proc. Natl. Acad. Sci. USA 94, 14429 (1997)

    Article  ADS  Google Scholar 

  38. E. A. Jagla: Phys. Rev. E 58, 1478 (1998)

    Article  ADS  Google Scholar 

  39. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, M. Karplus: J. Comp. Chem. 4, 187 (1983)

    Article  Google Scholar 

  40. A. D. MacKerell, Jr., B. Brooks, C. L. Brooks, III, L. Nilsson, B. Roux, Y. Won, M. Karplus: CHARMM: The Energy Function and Its Parameterization with an Overview of the Program. In: The Encyclopedia of Computational Chemistry, vol. 1, ed. P. v. R. Schleyer et al. (John Wiley & Sons: Chichester, 1998) pp. 271–277

    Google Scholar 

  41. D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, H. J. C. Berendsen: J. Comp. Chem. 26, 1701 (2005)

    Article  Google Scholar 

  42. L. Kale, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, K. Schulten: J. Comp. Phys. 151, 283312 (1999)

    Article  Google Scholar 

  43. D. A. Case, T. E. Cheatham, III, T. Darden, H. Gohlke, R. Luo, K. M. Merz Jr., A. Onufriev, C. Simmerling, B. Wang, R. Woods: J. Computat. Chem. 26, 1668 (2005).

    Article  Google Scholar 

  44. S. J. Plimpton: J. Comp. Phys. 117, 1 (1995)

    Article  MATH  ADS  Google Scholar 

  45. H. D. Nguyen, C. K. Hall: Proc. Natl. Acad. Sci. USA 101, 16180 (2004)

    Article  ADS  Google Scholar 

  46. M. Karplus: Fold. Des. 2, 569 (1997)

    Article  Google Scholar 

  47. E. I. Shakhnovich: Biology Met,1588 Chem. Rev. 106, 1559 (2006)

    Google Scholar 

  48. R. R. Shearer: Art Journal, 55, 64 (1996).

    Article  Google Scholar 

  49. K. B. Zeldovich, P. Chen, B. E. Shakhnovich, E. I. Shakhnovich: PLoS Comp. Bio. 7, 1224 (2007)

    Google Scholar 

  50. S. Miyazawa, R. L. Jernigan: J. Mol. Biol. 256, 623 (1996).

    Article  Google Scholar 

  51. N. V. Dokholyan, S. V. Buldyrev, H. E. Stanley, E. I. Shakhnovich: Folding & Design 3, 577 (1998).

    Article  Google Scholar 

  52. H. Taketomi, Y. Ueda, N. Go: Int. J. Peptide Protein Res. 7, 445 (1975)

    Article  Google Scholar 

  53. N. Go, H. Abe: Biopolymers 20, 991 (1981)

    Article  Google Scholar 

  54. H. Abe, N. Go: Biopolymers 20, 1013 (1981)

    Article  Google Scholar 

  55. N. V. Dokholyan, S. V. Buldyrev, H. E. Stanley, E. I. Shakhnovich: J. Mol. Biol. 296, 1183 (2000)

    Article  Google Scholar 

  56. A. Scala, N. V. Dokholyan, S. V. Buldyrev, H. E. Stanley, E. I. Shakhnovich: Phys. Rev. E 63 032901 (2001)

    Google Scholar 

  57. Y. Zhou, M. Karplus: Nature 401, 400 (1999)

    ADS  Google Scholar 

  58. Y, Zhou, M. Karplus: J. Mol. Biol. 293, 917 (1999)

    Article  Google Scholar 

  59. V. S. Pande, I. Baker, J. Chapman, S. P. Elmer, S. Khaliq, S. M. Larson, Y. M. Rhee, M. R. Shirts, C. D. Snow, E.J. Sorin, B. Zagrovic: Biopolymers 68, 91 (2003)

    Article  Google Scholar 

  60. A. R. Fersht: Curr. Opin. Struc. Biol. 7, 3 (1997)

    Article  Google Scholar 

  61. F. Ding, S. V. Buldyrev, N. V. Dokholyan: Biophys. J. 88, 147 (2005)

    Article  ADS  Google Scholar 

  62. J. M. Borreguero, N. V. Dokholyan, S. V. Buldyrev, H. E. Stanley, E. I. Shakhnovich: J. Mol. Biol. 318, 863 (2002)

    Article  Google Scholar 

  63. F. Ding, W. Guo, N. V. Dokholyan, E. I. Shakhnovich, J.-E. Shea: J. Mol. Biol. 350, 1035 (2005)

    Article  Google Scholar 

  64. J. M. Borreguero, F. Ding, S. V. Buldyrev, H. E. Stanley, N. V. Dokholyan: Biophys. J. 87, 521 (2004).

    Article  ADS  Google Scholar 

  65. H. Jang, C. K. Hall, Y. Zhou: Biophys. J. 83, 819 (2002)

    Article  ADS  Google Scholar 

  66. O. B. Ptitsyn: Adv. Protein Chem. 47, 83 (1995)

    Article  Google Scholar 

  67. F. Ding, R. K. Jha, N. V. Dokholyan, Structure 13, 1047 (2005)

    Article  Google Scholar 

  68. K. Lum, D. Chandler, J. Weeks: J. Phys. Chem. B 103, 4570 (1999).

    Article  Google Scholar 

  69. F. Ding, N. V. Dokholyan, S. V. Buldyrev, H. E. Stanley, E. I. Shakhnovich: Biophys. J. 83, 3525 (2002)

    Article  ADS  Google Scholar 

  70. S. Sharma, F. Ding, H. Nie, D. Watson, A. Unnithan, J. Lopp, D. Pozefsky, N. V. Dokholyan: Bioinformatics 22, 2693 (2006)

    Article  Google Scholar 

  71. C. Clementi, H. Nymeyer, J. N. Onuchic, J. Mol. Biol. 298, 937 (2000)

    Article  Google Scholar 

  72. A. R. Lam, J. M. Borreguero, F. Ding, N. V. Dokholyan, S. V. Buldyrev, H. E. Stanley, E. Shakhnovich: J. Mol. Biol. 373, 1348 (2007).

    Article  Google Scholar 

  73. A. R. Fersht: Proc. Natl. Acad. Sci. USA. 97, 14121 (2000)

    Article  ADS  Google Scholar 

  74. Y. Chen, N. V. Dokholyan, J. Biol. Chem. 281, 29148 (2006)

    Article  Google Scholar 

  75. J. W. Kelly: Curr. Opin. Struct. Biol. 8, 101 (1998)

    Article  Google Scholar 

  76. S. Y. Tan, M. B. Pepys: Histopathology 25, 403 (1994)

    Article  Google Scholar 

  77. F. Ding, N. V. Dokholyan, S.V. Buldyrev, H. E. Stanley, E. I. Shakhnovich: J. Mol. Biol. 324, 851 (2002)

    Article  Google Scholar 

  78. F. Ding, K. C. Prutzman, S. L. Campbell, N. V. Dokholyan: Structure, 14, 5 (2006).

    Article  Google Scholar 

  79. S. Peng, F. Ding, B. Urbanc, S. V. Buldyrev, L. Cruz, H. E. Stanley, N. V. Dokholyan: Phys. Rev. E 69, 041908 (2004)

    Article  ADS  Google Scholar 

  80. D. M. Walsh, I. Klyubin, J. V. Fadeeva, W. K. Cullen, R. Anwyl, M. S. Wolfe, M. J. Rowan, D. J. Selkoe: Nature 416, 535 (2002)

    Article  ADS  Google Scholar 

  81. G. Bitan, M. D. Kirkitadze, A. Lomakin, S. S. Vollers, G. B. Benedek, D. B. Teplow: Proc. Natl. Acad. Sci. USA 100, 330 (2003)

    Article  ADS  Google Scholar 

  82. H. D. Nguyen, C. K. Hall: Biophys. J. 87, 4122 (2004)

    Article  Google Scholar 

  83. H. D. Nguyen, C. K. Hall: J. Biol. Chem. 280, 9074 (2005)

    Article  Google Scholar 

  84. A. J. Marchut, C. K. Hall: Biophys. J. 90, 4574 (2006)

    Article  ADS  Google Scholar 

  85. J. S. Richardson, D. C. Richardson: Proc. Natl. Acad. Sci. USA 99, 2754 (2002)

    Article  ADS  Google Scholar 

  86. A. V. Smith, C. K. Hall: Proteins Struct. Funct. Genet. 44, 344 (2001)

    Article  Google Scholar 

  87. F. Ding, J. M. Borreguero, S. V. Buldyrev, H. E. Stanley, N. V. Dokholyan: Proteins Struct. Funct. Genet. 53 220 (2003)

    Google Scholar 

  88. B. Honig, A. S. Yang: Adv. Protein Chem. 46, 2758 (1995).

    Google Scholar 

  89. S. P. Ho, W. F. DeGrado: J. Am. Chem. Soc. 109, 6751 (1987)

    Article  Google Scholar 

  90. Z. Guo, D. Thirumalai: J. Mol. Biol. 263, 323 (1996)

    Article  Google Scholar 

  91. B. Urbanc, L. Cruz, F. Ding, D. Sammond, S. Khare, S. V. Buldyrev, H. E. Stanley, N. V. Dokholyan: Biophys. J. 87 2310 (2004)

    Google Scholar 

  92. J. Hermans, R. H. Yun, J. Leech, D. Cavanaugh: Sigma documentation, University of North Carolina (1994). http://hekto.med.unc.edu:8080/HERMANS/software/SIGMA/index.html

    Google Scholar 

  93. Y. N. Vorobjev, J. Hermans: Biophys. Chem. 78, 195 (1999).

    Article  Google Scholar 

  94. A. T. Petkova, Y. Ishii, J. J. Balbach, O. N. Antzutkin, R. D. Leapman, F. Delaglio, R. Tycko: Proc. Natl. Acad. Sci. USA 99, 16742 (2002).

    Article  ADS  Google Scholar 

  95. Y. Chen, N. V. Dokholyan: J. Mol. Biol. 354, 473 (2005).

    Article  Google Scholar 

  96. S. D. Khare, F. Ding, K. N. Gwanmesia, N. V. Dokholyan, PLoS Comp. Biol. 1, e30 (2005).

    Article  ADS  Google Scholar 

  97. F. Ding, J. J. LaRocque, N. V. Dokholyan, J. Biol. Chem. 280, 40235 (2005).

    Article  Google Scholar 

  98. B. Urbanc, L. Cruz, S. Yun, S. V. Buldyrev G. Bitan, D. B. Teplow, H. E. Stanley, “In Silico Study of Amyloid Beta Protein Folding and Oligomerization,” Proc. Natl. Acad. Sci. 101, 17345–17350 (2004).

    Article  ADS  Google Scholar 

  99. S. Yun, B. Urbanc, L. Cruz, G. Bitan, D. B. Teplow, H. E. Stanley: Biophys. J. 92, 4064 (2007).

    Article  ADS  Google Scholar 

  100. A. Lam, B. Urbanc, J. M. Borreguero, N. D. Lazo, D. B. Teplow, H. E. Stanley: Discrete Molecular Dynamics Study of Alzheimer Amyloid β-protein, Proceedings of The 2006 International Conference on Bioinformatics & Computational Biology, CSREA Press, Las Vegas, Nevada, 322–328 (2006).

    Google Scholar 

  101. B. Urbanc, L. Cruz, D. B. Teplow, H. E. Stanley, Current Alzheimer Research 3, 493 (2006).

    Article  Google Scholar 

  102. D. B. Teplow, N. D. Lazo, G. Bitan, S. Bernstein, T. Wyttenbach, M. T. Bowers, A. Baumketner, J.-E. Shea, B. Urbanc, L. Cruz, J. Borreguero, H. E. Stanley: Account of Chemical Research 39, 635 (2006).

    Article  Google Scholar 

  103. J. Kyte, R. F. Doolittle: J. Mol. Biol. 157, 105 (1982)

    Article  Google Scholar 

  104. G. Bitan, A. Lomakin, D. B. Teplow: J. Biol. Chem. 276, 35176 (2001)

    Article  Google Scholar 

  105. G. Bitan, B. Tarus, S. S. Vollers, H. A. Lashuel, M. M. Condron, J. E. Straub, D. B. Teplow: J. Am. Chem. Soc. 125, 15359 (2003)

    Article  Google Scholar 

  106. J. M. Borreguero, B. Urbanc, N. D. Lazo, S. V. Buldyrev, D. B. Teplow, H. E. Stanley, Folding events in the 21-30 region of amyloid-beta-protein (A beta) studied in silico, 6020 Proc. Natl. Acad. Sci. 102, 6015 (2005)

    Article  Google Scholar 

  107. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. Di Nola, J. R. Haak: J. Chem. Phys. 81, 3684 (1984)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Buldyrev, S.V. (2009). Application of Discrete Molecular Dynamics to Protein Folding and Aggregation. In: Franzese, G., Rubi, M. (eds) Aspects of Physical Biology. Lecture Notes in Physics, vol 752. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78765-5_5

Download citation

Publish with us

Policies and ethics