Skip to main content

Gas–Liquid Flow

  • Chapter
  • 2616 Accesses

Part of the book series: Heat and Mass Transfer ((HMT))

Abstract

In Chap. 5 the available data related to flow and heat transfer of a gas–liquidmixture in single and parallel channels of different size and shape are presented. These data concern flow regimes, void fraction, pressure drop and heat transfer. The effects of different parameters on flow patterns and hydrodynamic and thermal characteristics of gas–liquid flow are discussed. Understanding the differences in two-phase flow characteristics between conventional size channels and micro-channels is also important for designing mini- or micro-heat exchangers, since the flow characteristics will affect the phase change heat transfer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akbar MK, Plummer DA, Ghiaasiaan SM (2003) On gas–liquid two-phase flow regimes in micro-channels. Int J Multiphase Flow 29:855–865

    Article  MATH  Google Scholar 

  • Ali MI, Sadatomi M, Kawaji M (1993) Two-phase flow in narrow channels between two flat plates. Can J Chem Eng 71:657–666

    Article  Google Scholar 

  • Armand AA (1946) The resistance during the movement of a two-phase system in horizontal pipes. Izv Vses Teplotekh Inst 1:16–23 (AERE-Lib/Trans 828)

    Google Scholar 

  • Bao ZY, Fletcher DF, Haynes BS (2000) An experimental study of gas–liquid flow in a narrow conduit. Int J Heat Mass Transfer 43:2313–2324

    Article  Google Scholar 

  • Barajas AM, Panton RL (1993) The effect of contact angle on two-phase flow in capillary tubes. Int J Multiphase Flow 19:337–346

    Article  MATH  Google Scholar 

  • Barnea D, Luniski Y, Taitel Y (1983) Flow pattern in horizontal and vertical two phase flow in small diameter pipes. Can J Chem Eng 61:617–620

    Article  Google Scholar 

  • Baroczy CJ (1963) Correlation of liquid fraction in two-phase flow with application to liquid metals, NAA-SR-8171. Butterworth, London

    Google Scholar 

  • Beattie DRH, Whalley PB (1982) A simple two-phase flow frictional pressure drop calculation method. Int J Multiphase Flow 8:83–87

    Article  Google Scholar 

  • Benjamin TB (1968) Gravity currents and related phenomena. J. Fluid Mechanics 31(2):209–248

    Article  MATH  MathSciNet  Google Scholar 

  • Butterworth D (1975) A comparison of some void-fraction relationships for co-current gas–liquid flow. Int J Multiphase Flow 1:845–850

    Article  MathSciNet  Google Scholar 

  • Celata GP (ed) (2004) Heat transfer and fluid flow in micro-channels. Bergel, New York

    Google Scholar 

  • Chen JC (1966) Correlation for boiling heat transfer to saturated fluids in convective flow. Ind Eng Chem Process Des Dev 5:322–329

    Article  Google Scholar 

  • Chen JJJ, Spedding PL (1983) An analysis of holdup in horizontal two-phase gas–liquid flow. Int J Multiphase Flow 9:147–159

    Article  MATH  Google Scholar 

  • Cheng P, Wu WY (2006) Mesoscale and microscale phase change heat transfer. In: Greene G, Cho Y, Hartnett J, Bar-Cohen A (eds) Advances in heat transfer 39. Academic, New York

    Google Scholar 

  • Chisholm D (1983) Two-phase flow in pipelines and heat exchangers. Pitman, Bath, England

    Google Scholar 

  • Cicchitti A, Lombardi C, Silvestri M, Solddaini G, Zavalluilli R (1960) Two-phase cooling experiments: Pressure drop, heat transfer and burnout measurement. Energia Nucl 7(6):407–425

    Google Scholar 

  • Coleman JW, Garimella SV (1999) Characteristics of two-phase patterns in small diameter round and rectangular tubes. Int J Heat Mass Transfer 42:2869–2881

    Article  Google Scholar 

  • Damianides CA, Westwater JW (1988) Two-phase flow patterns in a compact heat exchanger and in small tubes. In: Proceedings of the 2nd UK National Conference On Heat Transfer, Glasgow, 14–16 September 1988. Mechanical Engineering, London, pp 1257–1268

    Google Scholar 

  • Dukler AE, Wicks IM, Cleveland RG (1964) Pressure drop and hold-up in two-phase flow. AIChE J 10(1):38–51

    Article  Google Scholar 

  • Friedel L (1979) Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow. In: 3rd International European Two-Phase Group Meeting, Ispra, Italy, 1979, vol 18, issue 7

    Google Scholar 

  • Fukano T, Kariyasaki A (1993) Characteristics of gas–liquid two-phase flow in a capillary. Nucl Eng Des 141:59–68

    Article  Google Scholar 

  • Galbiati L, Andreini P (1992) Flow patterns transition for vertical downward two-phase flow in capillary tubes. Inlet mixing effects. Int Comm Heat Mass Transfer 19:791–799

    Article  Google Scholar 

  • Garimella S, Sobhan C (2003) Transport in microchannels – a critical review. Ann Rev Heat Transfer 13:1–50

    Google Scholar 

  • Ghajar AJ, Kim J-Y, Malhotra K, Trimble S (2004) Systematic heat transfer measurements for air–water two-phase flow in horizontal and slightly upward inclined pipe. In: Proceedings of the 10th Brazilian Congress of Thermal Sciences and Engineering – ABCM, Rio de Janeiro, 29 Nov–3 Dec 2004

    Google Scholar 

  • Ghiaasiaan SM, Abdel-Khalik SI (2001) Two-phase flow in micro-channels. Adv Heat Transfer 34:145–254

    Google Scholar 

  • Gungor KE, Winterton RHS (1986) A general correlation for flow boiling in tubes and annuli. Int J Heat Mass Transfer 29:351–358

    Article  MATH  Google Scholar 

  • Hetsroni G, Gurevich M, Mosyak A, Rozenblit R (2001) Dryout in inclined gas–liquid pipe-lines. Trans IChemE 79(A):376–382

    Article  Google Scholar 

  • Hetsroni G, Hu BG, Yi JH, Mosyak A, Yarin LP, Ziskind G (1998a) Heat transfer in intermittent air–water flows: Part I. Int J Multiphase Flow 24(2):165–188

    Article  MATH  Google Scholar 

  • Hetsroni G, Hu BG, Yi JH, Mosyak A, Yarin LP, Ziskind G (1998b) Heat transfer in intermittent air–water flows: Part II. Int J Multiphase Flow 24(2):189–212

    Article  MATH  Google Scholar 

  • Hetsroni G, Mewes D, Enke C, Gurevich M, Mosyak A, Rozenblit R (2003b) Heat transfer of two-phase flow in inclined tubes. Int J Multiphase Flow 29:173–194

    Article  MATH  Google Scholar 

  • Hetsroni G, Mosyak A, Segal Z, Pogrebnyak E (2003a) Two-phase flow patterns in parallel micro-channels. Int J Multiphase Flow 29:341–360

    Article  MATH  Google Scholar 

  • Ide H, Kawahara A, Kawaji M (2006) Comparison of gas–liquid two-phase flow characteristics between mini-channels and micro-channels. In: Proceedings of 13th International Heat Transfer Conference, Sydney Convention and Exibition Centre, Sydney, Australia, 13–18 August 2006, MPH-51

    Google Scholar 

  • Ishii (1977) One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase regimes. ANL Report ANL-77-47

    Google Scholar 

  • Ide H, Matsumura H, Tanaka Y, Fukano T (1997) Flow patterns and frictional pressure drop in gas–liquid two-phase flow in vertical capillary channels with rectangular cross section, Trans JSME Ser B 63:452–160

    Google Scholar 

  • Kariyasaki A, Fukano T, Ousaka A, Kagawa M (1991) Characteristics of time-varying void fraction in isothermal air–water co-current flow in horizontal capillary tube Trans JSME 57(544):4036–4043

    Google Scholar 

  • Kawahara A, Chung PM, Kawaji M (2002) Investigation of two-phase flow pattern, void fraction and pressure drop in a micro-channel. Int J Multiphase Flow 28:1411–1435

    Article  MATH  Google Scholar 

  • Kawaji M (1999) Fluid mechanics aspects of two-phase flow: Flow in other geometries. In: Kandlikar SG, Shoji M, Dhir VK (eds) Handbook of phase change: boiling and condensation. Taylor and Francis, Washington, DC, pp 205–259

    Google Scholar 

  • Kim D, Ghajar AJ, Dougherty RL, Ryali VK (1999) Comparison of 20 two-phase heat transfer correlations with seven sets of experimental data, including flow pattern and tube inclination effects. J Heat Transfer Eng 29(1):15–40

    Google Scholar 

  • Kokal SL, Stanislav JF (1989) An experimental study of two- phase flow in slightly inclined pipes. 1 Flow patterns, 2 Liquid hold-up and pressure drop. Chem Eng Sci 44:655–679, 681–693

    Google Scholar 

  • Lee HJ, Lee SY (2001) Pressure drop correlations for two-phase flow within horizontal rectangular channels with small height. Int J Multiphase Flow 27:783–796

    Article  MATH  Google Scholar 

  • Lin PY, Hanratty TJ (1987) The effect of pipe diameter on flow patterns for air–water flow in horizontal pipes. Int J Multiphase Flow 13:549–563

    Article  Google Scholar 

  • Lin S, Kwok CCK, Li RY, Chen ZH, Chen ZY (1991) Local frictional pressure drop during vaporization for R-12 through capillary tubes. Int J Multiphase Flow 17:95–102

    Article  MATH  Google Scholar 

  • Lockhart RW, Martinelli RC (1949) Proposed correlation of data for isothermal two-phase two-component flow in pipes. Chem Eng Prog 45:39–18

    Google Scholar 

  • Lowe DC, Rezkallah KS (1999) Flow regime identification in microgravity two-phase flow using void fraction signals. Int J Multiphase Flow 25:433–457

    Article  MATH  Google Scholar 

  • Mandhane JM, Gregory GA, Aziz K (1974) A flow pattern map for gas–liquid flow in horizontal pipes. Int J Multiphase Flow 1:537–553

    Article  Google Scholar 

  • McAdams WH (1954) Heat transmission, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Mishima K, Hibiki T (1996) Some characteristics of air–water two-phase flow in small diameter vertical tubes. Int J Multiphase Flow 22:703–712

    Article  MATH  Google Scholar 

  • Mishima K, Ishii M (1984) Flow regime transition criteria for upward two-phase flow in vertical tubes. Int J Heat Mass Transfer 27:723–737

    Article  Google Scholar 

  • Mosyak A, Hetsroni G (1999) Analysis of dryout in horizontal and inclined tubes. Int J Multiphase Flow 25:1521–1543

    Article  MATH  Google Scholar 

  • Nelson RA, Pasamehmetoglu KO (1992) Quenching phenomena. In: Hewitt GF, Delhaye JM, Zuber N (eds) Post-dryout Heat transfer. CRC, Boca Raton, pp 39–184

    Google Scholar 

  • Owens WL (1961) Two-phase pressure gradient. In: ASME International Developments in Heat Transfer, Part II. ASME, New York

    Google Scholar 

  • Ozawa M, Akagawa K, Sakaguchi T (1989) Flow instabilities in parallel-channel flow systems of gas–liquid two-phase mixtures. Int J Multiphase Flow 15:639–657

    Article  Google Scholar 

  • Ozawa M, Akagawa K, Sakaguchi T, Tsukahara T, Fujii T (1979) Oscillatory flow instabilities in air–water two-phase flow systems. Report. Pressure drop oscillation. Bull JSME 22:1763–1770

    Google Scholar 

  • Qu W, Yoon S-M, Mudawar I (2004) Two-phase flow and heat transfer in rectangular micro-channels. J Electron Packag 126:288–300

    Article  Google Scholar 

  • Rezkallah KS (1998) Heat transfer and flow characteristics of liquid–gas flows at reduced gravity. Trends Chem Eng 4:161–170

    Google Scholar 

  • Rezkallah KS (1996) Weber number based flow-pattern maps for liquid–gas flows at microgravity. Int J Multiphase Flow 22:1265–1270

    Article  Google Scholar 

  • Sadatomi Y, Sato Y, Saruwatari S (1982) Two-phase flow in vertical noncircular channels. Int J Multiphase Flow 8:641–655

    Article  Google Scholar 

  • Serizawa A, Feng Z, Kawara Z (2002) Two-phase flow in micro-channels. Exp Thermal Fluid Sci 26:703–714

    Article  Google Scholar 

  • Serizawa A, Feng Z (2001) Two-phase flow in micro-channels. In: Proceedings of the 4th International Conference on Multiphase Flow, New Orleans, 27 May–1 June 2001

    Google Scholar 

  • Spedding PL, Watterson JK, Raghunathan SR, Ferguson MEG (1998) Two-phase co-current flow in inclined pipe. Int J Heat Mass Transfer 41:4205–4228

    Article  Google Scholar 

  • Suo M, Griffith P (1964) Two-phase flow in capillary tubes. J Basic Eng 86:576–582

    Google Scholar 

  • Taitel Y, Dukler AE (1976) A model for predicting flow regime transitions in horizontal and near horizontal gas–liquid flow. AIChE J 22:47–55

    Article  Google Scholar 

  • Taitel Y, Barnea D, Dukler AE (1980) Modeling flow pattern transitions for steady upward gas–liquid flow in vertical tubes. AIChE J 26:345–354

    Article  Google Scholar 

  • Triplett KA, Ghiaasiaan SM, Adbel-Khalik SI, Sadowski DL (1999a) Gas–liquid two-phase flow in microchannels. Part I: two-phase flow patterns. Int J Multiphase Flow 25:377–394

    Article  MATH  Google Scholar 

  • Triplett KA, Ghiaasiaan SM, Abdel-Khalik SI, LeMouel A, McCord BN (1999b) Gas–liquid two-phase flow in microchannels. Part II: void fraction and pressure drop. Int J Multiphase Flow 25:395–410

    Article  MATH  Google Scholar 

  • Tshuva M, Barnea D, Taitel Y (1999) Two-phase flow in inclined parallel pipes. Int J Multiphase Flow 25:1491–1503

    Article  MATH  Google Scholar 

  • Ungar EK, Cornwell JD (1992) Two-phase pressure drop of ammonia in small diameter horizontal tubes. In: AIAA 17th Aerospace Ground Testing Conference, Nashville, 6–8 July 1992

    Google Scholar 

  • Wallis GB (1969) One dimensional two-phase flow. McGraw-Hill, New York

    Google Scholar 

  • Yang CY, Shieh CC (2001) Flow pattern of air–water and two-phase R-134a in small circular tubes. Int J Multiphase Flow 27:1163–1177

    Article  MATH  Google Scholar 

  • Zhao L, Rezkallah KS (1993), Gas–liquid flow patterns at microgravity conditions. Int J Multiphase Flow 19:751–763

    Article  MATH  Google Scholar 

  • Zhao TS, Bi QC (2001a) Co-current air–water two-phase flow patterns in vertical triangular microchannels. Int J Multiphase Flow 27:765–782

    Article  MATH  Google Scholar 

  • Zhao TS, Bi QC (2001b) Pressure drop characteristics of gas–liquid two-phase flow in vertical miniature triangular channels. Int J Heat Mass Transfer 44:2523–2534

    Article  Google Scholar 

  • Zimmerman R, Gurevich M, Mosyak A, Rozenblit R, Hetsroni G (2006) Heat transfer to air–water annular flow in a horizontal pipe. Int J Multiphase Flow 32:1–19

    Article  MATH  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Gas–Liquid Flow. In: Fluid Flow, Heat Transfer and Boiling in Micro-Channels. Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78755-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78755-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78754-9

  • Online ISBN: 978-3-540-78755-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics