Skip to main content

Part of the book series: Heat and Mass Transfer ((HMT))

  • 2585 Accesses

Abstract

The subject of this chapter is single-phase heat transfer in micro-channels. Several aspects of the problem are considered in the frame of a continuum model, corresponding to small Knudsen number. A number of special problems of the theory of heat transfer in micro-channels, such as the effect of viscous energy dissipation, axial heat conduction, heat transfer characteristics of gaseous flows in microchannels, and electro-osmotic heat transfer in micro-channels, are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams TM, Abdel-Khalik SI, Jeter SM, Qureshi ZH (1998) An experimental investigation of single-phase forced convection in micro-channels. Int J Heat Mass Transfer 41:851–857

    Article  Google Scholar 

  • Asako Y, Toriyama H (2005) Heat transfer characteristics of gaseous flows in micro-channels. Microscale Thermophys Eng 9:15–31

    Article  Google Scholar 

  • Baehr HD, Stephan K (1998) Heat and mass transfer. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  • Bailey DK, Ameel T, Warrington RO, Savoie TI (1995) Single phase forced convection heat transfer in micro-geometries: a review. In: Proceedings the 13th of Intersociety Energy Conversion Engineering Conference, San Diego, 20–25 August 1978. American Society of Mechanical Engineers, New York, pp 301–310

    Google Scholar 

  • Bastanjian SA, Merzhanov AG, Xudiaev SI (1965) On hydrodynamic thermal explosion. Sov Phys Docl 163:133–136

    Google Scholar 

  • Celata GP, Como M, Zummo G (2004) Thermal-hydraulic characteristics of single-phase flow in capillary pipes. Exp Thermal Fluid Sci 28:87–95

    Article  Google Scholar 

  • Celata GP, Cumo M, Marconi V, McPhail SJ, Zummo Z (2005) Micro-tube heat transfer scaling effects: an experimental validation. In: Proceedings of ECI International Conference on Heat Transfer and Fluid Flow in Microchannels, Caste/Vecchio Pascoli, Italy, 25–30 September 2005

    Google Scholar 

  • Celata GP, Cumo M, Marconi V, McPhail SJ, Zummo Z (2006) Micro-tube liquid single phase heat transfer in laminar flow. Int. J. Heat Mass Transfer 49:3538–3546

    Article  Google Scholar 

  • Chakraborty S (2006) Analytical solutions of Nusselt number for thermally fully developed flow in microtubes under a combined action of electroosmotic forces and imposed gradients. Int J Heat Mass Transfer 49:810–813

    Article  Google Scholar 

  • Choi SB, Barron R, Warrington RQ (1991) Fluid flow and heat transfer in micro-tubes. In: Choi D et al. (eds) Micro-mechanical sensors, actuators and systems. ASME DSC 32:121–128

    Google Scholar 

  • Davis EJ, Gill WN (1970) The effect of axial conduction in the wall on heat transfer with laminar flow. Int J Heat Mass Transfer 23:459–470

    Article  Google Scholar 

  • Dittus FW, Boelter LMK (1930) Heat transfer in automobile radiators of tubular type. University of California, Berkley. Publ Eng 2(13):443–461

    Google Scholar 

  • Eckert E, Weise W (1941) Die Temperatur unbeheizter Körper in einem Gasstrom hoher Geschwindigkeit. Forsch Ing Wes 12:40–50

    Article  Google Scholar 

  • Gad-el-Hak M (1999) The fluid mechanics of micro-devices. The Freeman Scholar Lecture. J Fluid Eng 121:5–33

    Article  Google Scholar 

  • Gad-el-Hak M (2003) Comments on critical view on new results in micro-fluid mechanics. Int J Heat Mass Transfer 46:3941–3945

    Article  MATH  Google Scholar 

  • Gamart G, Favre-Marinet M, Asendrych D (2005) Conduction and entrance effects on laminar liquid flow and heat transfer in rectangular micro-channels. Int J Heat Mass Transfer 48:2943–2954

    Article  Google Scholar 

  • Gao P, Le Person S, Favre-Marinet M (2002) Scale effects on hydrodynamics and heat transfer in two-dimensional mini and micro-channels. Int J Thermal Sci 41:1017–1027

    Article  Google Scholar 

  • Garimella SV, Sobhan CB (2003) Transport in micro-channels – a critical review. Ann Rev Heat Transfer 13:1–50

    Google Scholar 

  • Gnielinski V (1976) New equations for heat and mass transfer in turbulent pipe and channel flow. Int Chem Eng 16:359–368

    Google Scholar 

  • Gruntfest J, Young JP, Johnson NL (1964) Temperatures generated by the flow of liquids in pipers. J Appl Phys 35:18–23

    Article  MATH  Google Scholar 

  • Gua Z-Y, Li Z-X (2003) Size effect on micro-scale single-phase flow and heat transfer. Int J Heat Mass Transfer 46:149–159

    Article  Google Scholar 

  • Harms TM, Kazmierzak MJ, Gerner FM (1999) Developing convective heat transfer in deep rectangular micro-channels. Int J Heat Fluid Flow 20:149–157

    Article  Google Scholar 

  • Hassan I, Phuttavong P, Abdelgawad M (2004) Micro-channel heat sinks: an overview of the state of the art. Microscale Thermophys Eng 8:183–204

    Article  Google Scholar 

  • Hehnecke DK (1968) Heat transfer by Hagen–Poiseuille flow in the thermal development region with axial conduction. Wazme Stoffubertz 1:177–184

    Google Scholar 

  • Herwig H (2000) Flow and heat transfer in micro systems. Is everything different or just smaller. ZAMM 82:579–586

    Article  MathSciNet  Google Scholar 

  • Herwig H, Hausner O (2003) Critical view on new results in micro-fluid mechanics: an example. Int J Heat Mass Transfer 46:935–937

    Article  Google Scholar 

  • Hetsroni G, Gurevich M, Mosyak A, Rozenblit R (2003) Surface temperature measurement of a heated capillary tube by means of an infrared technique. Meas Sci Technol 14:807–814

    Article  Google Scholar 

  • Hetsroni G, Gurevich M, Mosyak A, Rozenblit R (2004) Drag reduction and heat transfer of surfactants flowing in a capillary tube. Int J Heat Mass Transfer 47: 3797–3809

    Article  Google Scholar 

  • Hetsroni G, Mosyak A, Pogrebnyak E, Yarin LP (2005) Fluid flow in micro-channels Int J Heat Mass Transfer 48:1982–1998

    Article  Google Scholar 

  • Hetsroni G, Mosyak A, Segal Z (2001) Nonuniform temperature distribution in electronic devices cooled by flow in parallel micro-channels. IEEE Trans Comp Packag Technol 24(1):16–23

    Article  Google Scholar 

  • Ho CM, Tai Y-C (1998) Micro-electronic mechanic systems (MEMS) and fluid flows. Ann Rev Fluid Mech 30:5–33

    Article  Google Scholar 

  • Horiuchi K, Dutta P (2004) Joule heating effects in electroosmotically driven microchannel flows. Int J Heat Mass Transfer 47:3085–3095

    Article  MATH  Google Scholar 

  • Hunter RJ (1981) Zeta potential in colloid science: principles and applications. Academic, New York

    Google Scholar 

  • Incropera FP, De Witt DP (1996) Fundamentals of heat and mass transfer, 4th edn. Wiley, New York

    Google Scholar 

  • Judy J, Maynes D, Webb BW (2002) Characterization of friction pressure drop for liquid flows through micro-channels. Int J Heat Mass Transfer 45:3477–3489

    Article  Google Scholar 

  • Kandlikar S, Grande W (2002) Evolution of micro-channel flow passages – thermohydraulic performance and fabrication technology. In: Proceedings of IMEECE, ASME International Mechanical Engineering Congress and Exposition, New Orleans, November 2002, pp 1–13

    Google Scholar 

  • Kandlikar SG, Joshi S, Tian S (2003) Effect of surface roughness on heat transfer and fluid flow characteristics at low Reynolds numbers in small diameter tubes. Heat Transfer Eng 24(3):4–16

    Article  Google Scholar 

  • Kays WM, Crawford ME (1993) Convective heat and mass transfer. McGraw-Hill, New York

    Google Scholar 

  • Klein D, Hetsroni G, Mosyak A (2005) Heat transfer characteristics of water and APG surfactant solution in a micro-channel heat sink. Int J Multiphase Flow 31:393–415

    Article  MATH  Google Scholar 

  • Koo J, Kleinstreuer C (2004) Viscous dissipation effects in micro-tubes and micro-channels. Int J Heat Mass Transfer 47:3159–3169

    Article  Google Scholar 

  • Kostic M (1994) On turbulent drag and heat transfer reduction phenomena and laminar heat transfer enhancement in non-circular duct flow of certain non-Newtonian fluid. Int J Heat Mass Transfer 37:133–147

    Article  Google Scholar 

  • Kroeker CJ, Soliman HM, Ormiston SJ (2004) Three-dimensional thermal analysis of heat sinks with circular cooling micro-channels. Int J Heat Mass Transfer 47:4733–4744

    Article  MATH  Google Scholar 

  • Lee PS, Garimella SV, Liu D (2005) Investigation of heat transfer in rectangular micro-channels. Int J Heat Mass Transfer 48:1688–1704

    Article  Google Scholar 

  • Lelea D (2005) Some considerations on frictional losses evaluation of a water flow in micro-tubes. Int Comm Heat Mass Transfer 32:964–973

    Article  Google Scholar 

  • Lelea D, Nishio S, Takano K (2004) The experimental research on micro-tube heat transfer and fluid flow of distilled water. Int J Heat Mass Transfer 47:2817–2830

    Article  Google Scholar 

  • Li J, Peterson GP, Cheng P (2004) Three-dimensional analysis of heat transfer in a micro-heat sink with single phase flow. Int J Heat Mass Transfer 47:4215–4231

    Article  MATH  Google Scholar 

  • Lin TY, Yang CY (2007) An experimental investigation by method of fluid crystal thermography. Int. J. Heat Mass Transfer 50(23-24):4736-4742

    Article  MathSciNet  Google Scholar 

  • Ma HB, Peterson GP (1997) Laminar friction factor in micro-scale ducts of irregular cross section. Microscale Thermophys Eng 1:253–265

    Article  Google Scholar 

  • Mala GM, Li D (1999) Flow characteristics of water in micro-tubes. Int J Heat Fluid Flow 20:142–148

    Article  Google Scholar 

  • Mala GM, Li D, Dale JD (1997a) Heat transfer and fluid flow in micro-channels. Int J Heat Mass Transfer 40:3079–3088

    Article  MATH  Google Scholar 

  • Mala GM, Li D, Werner C (1997b) Flow characteristics of water through a micro-channel between two parallel plates with electro kinetic effects. Int J Heat Fluid Flow 18:491–496

    Article  Google Scholar 

  • Male van P, Croon de MHJM, Tiggelaar RM, Derg van den A, Schouten JC (2004) Heat and mass transfer in a square micro-channel with asymmetric heating. Int J Heat Mass Transfer 47:87–99

    Article  Google Scholar 

  • Maranzana G, Perry I, Maillet D (2004) Mini- and micro-channels: influence of axial conduction in the walls. Int J Heat Mass Transfer 47:3993–4004

    Article  MATH  Google Scholar 

  • Maynes D, Webb BW (2003) Full developed electro-osmotic heat transfer in microchannels. Int J Heat Mass Transfer 46:1359–1369

    Article  MATH  Google Scholar 

  • Morini GL (2004) Single-phase convective heat transfer in micro-channels: overview of experimental results. Int J Thermal Sci 43:631–651

    Article  Google Scholar 

  • Morini GL (2005) Viscous heating in liquid flows in micro-channels. Int J Heat Mass Transfer 48:3637–3647

    Article  Google Scholar 

  • Nguyen NT, Bochnia D, Kiehnscherrf R, Dozel W (1996) Investigation of forced convection in micro-fluid systems. Sens Actuators A 55:49–55

    Article  Google Scholar 

  • Nguyen TV (1992) Laminar heat transfer for thermal developing flow in ducts. Int J Heat Mass Transfer 35:1733–1741

    Article  Google Scholar 

  • Owhaib W, Palm B (2004) Experimental investigation of single-phase convective heat transfer in circular micro-channels. Exp Thermal Fluid Sci 28:105–110

    Article  Google Scholar 

  • Peng XF, Peterson GP (1995) The effect of thermofluid and geometric parameters on convection of liquid through rectangular micro-channels. Int J Heat Mass Transfer 38:755–758

    Article  Google Scholar 

  • Peng XF, Peterson GP (1996) Convective heat transfer and flow friction for water flow in micro-channel structures. Int J Heat Mass Transfer 39:2599–2608

    Article  Google Scholar 

  • Peng XF, Wang BX, Peterson GP, Ma NB (1995) Experimental investigation of heat transfer in flat plates with rectangular micro-channels. Int J Heat Mass Transfer 38:127–137

    Article  Google Scholar 

  • Petukhov BS, Kurgano V, Gladuntsov A (1973) Heat transfer in turbulent pipe flow of gases with variable properties. Heat Transfer Sov Res 5:109–116

    Google Scholar 

  • Petukhov BS (1967) Heat transfer and drag of laminar flow of liquid in pipes. Energy, Moscow

    Google Scholar 

  • Qu W, Mala GM, Li D (2000) Heat transfer for water flow in trapezoidal silicon micro-channels. Int J Heat Mass Transfer 43:3925–3936

    Article  MATH  Google Scholar 

  • Qu W, Mudawar I (2002) Analysis of three-dimensional heat transfer in micro-channel heat sinks. Int J Heat Mass Transfer 45:3973–3985

    Article  MATH  Google Scholar 

  • Qu W, Mudawar I (2002) Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. Int J Heat Mass Transfer 45:2549–2565

    Article  Google Scholar 

  • Qu W, Mudawar I (2004) Measurement and correlation of critical heat flux in two-phase micro-channel heat sinks. Int J Heat Mass Transfer 47:2045–2059

    Article  Google Scholar 

  • Ren L, Qu W, Li D (2001) Interfacial electro kinetic effects on liquid flow in micro-channels. Int J Heat Mass Transfer 44:3125–3134

    Article  MATH  Google Scholar 

  • Reynaud S, Debray F, Frans J-P, Maitre T (2005) Hydrodynamics and heat transfer in two-dimensional mini-channels. Int J Heat Mass Transfer 48:3197–3211

    Article  Google Scholar 

  • Schlichting H (2000) Boundary layer theory, 8th edn. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  • Shah RK, London AL (1978) Laminar flow forced convection in ducts. Academic, New York

    Google Scholar 

  • Sobhan CB, Garimella SV (2001) A comparative analysis of studies on heat transfer and fluid flow in micro-channels. Microscale Thermophys Eng 5:293–311

    Article  Google Scholar 

  • Tiselj I, Hetsroni G, Mavko B, Mosyak A, Pogrebhyak E, Segal Z (2004) Effect of axial conduction on the heat transfer in micro-channels. Int J Heat Mass Transfer 47:2551–2565

    Article  Google Scholar 

  • Toh KC, Chen XY, Chai JC (2002) Numerical computation of fluid flow and heat transfer in micro-channels. Int J Heat Mass Transfer 45:5133–5141

    Article  MATH  Google Scholar 

  • Tso CP, Mahulikar SP (1998) The use of the Brinkman number for single phase forced convective heat transfer in micro-channels. Int J Heat Mass Transfer 41:1759–1769

    Article  MATH  Google Scholar 

  • Tso CP, Mahulikar SP (1999) The role of the Brinkman number in analyzing flow transitions in micro-channels. Int J Heat Mass Transfer 42:1813–1833

    Article  Google Scholar 

  • Tso CP, Mahulikar SP (2000) Experimental verification of the role of the Brinkman number in micro-channels using local parameters. Int J Heat Mass Transfer 43:1837–1849

    Article  Google Scholar 

  • Tunc G, Bayazitoglu Y (2001) Heat transfer in micro-tubes with viscous dissipation. Int J Heat Mass Transfer 44:2395–2403

    Article  MATH  Google Scholar 

  • Turner SE, Sun H, Faghri M, Gregory OJ (1999) Local pressure measurement of gaseous flow through micro-channels. ASME HTD 364(3):71–80

    Google Scholar 

  • Turner SE, Sun H, Faghri M, Gregory OJ (2000) Effect of surface roughness on gaseous flow through micro-channels. ASME HTD 366(2):291–298

    Google Scholar 

  • Wang BX, Peng XF (1994) Experimental investigation on liquid forced-convection heat transfer through micro-channels. Int J Heat Mass Transfer 37(1):73–82

    Article  Google Scholar 

  • Warrier GR, Dhir VK, Momoda LA (2002) Heat transfer and pressure drop in narrow rectangular channels. Exp Thermal Fluid Sci 26:53–64

    Article  Google Scholar 

  • Weigand B, Lauffer D (2004) The extended Graetz problem with piecewise constant wall temperature for pipe and channel flows. Int J Heat Mass Transfer 47:5303–5312

    Article  MATH  Google Scholar 

  • Wu HY, Cheng P (2003) An experimental study of convective heat transfer in silicon micro-channels with different surface conditions. Int J Heat Mass Transfer 46:2547–2556

    Article  MathSciNet  Google Scholar 

  • Wu PY, Little WA (1984) Measuring of the heat transfer characteristics of gas flow in fine channel heat exchangers for micro-miniature refrigerators. Cryogenics 24:415–420

    Article  Google Scholar 

  • Yang C, Li D (1998) Analysis of electro kinetic effects on the liquid flow in micro-channels. Coll Surf A Physicochem Eng Aspects 143:339–353

    Article  Google Scholar 

  • Yang CY, Lin TY (2007) Heat transfer characteristics of water flow in micro-tubes. Exp. Thermal and Fluid Science 32:432-439

    Article  Google Scholar 

  • Yoo JY (2006) Recent studies of fluid flow and heat transfer in thermal micro-devices. Nanoscale Microscale Thermophys Eng 10:67–81

    Article  Google Scholar 

  • Zel’dovich YaB, Barenblatt GI, Librovich VB, Maxhviladse GM (1985) Mathematical theory of combustion and explosion. Plenum, New York

    Google Scholar 

  • Zhao CY, Lu TJ (2002) Analysis of micro-channels for electronic cooling. Int J Heat Mass Transfer 45:4857–4869

    Article  MATH  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Heat Transfer in Single-Phase Flows. In: Fluid Flow, Heat Transfer and Boiling in Micro-Channels. Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78755-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78755-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78754-9

  • Online ISBN: 978-3-540-78755-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics