Skip to main content

Cardiac Delivery of Nucleic Acids by Transcriptional and Transductional Targeting of Adeno-Associated Viral Vectors

  • Chapter
RNA Technologies in Cardiovascular Medicine and Research
  • 363 Accesses

Abstract

RNAi-based approaches show promising effects in preclinical models of cardiac diseases. However, a potential clinical use may be limited by the low efficiency of cardiac transfer. Efficient and sustained cardiac delivery in large animal models and finally clinical trials requires transfer of vectorized shRNA with suitable application systems. Packaging shRNA constructs in targeted adeno-associated viral (AAV) vectors may be versatile for systemic delivery into rodent hearts. Expressing microRNA under control of cardiac-specific promoters may further increase efficiency and specificity of delivery. For large animals and finally clinical studies, careful selection of the vector and application system will be necessary to obtain valid results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aikawa R, Huggins GS, Snyder RO (2002) Cardiomyocyte-specific gene expression following recombinant adeno-associated viral vector transduction. J Biol Chem 277:18979–18985

    Article  PubMed  CAS  Google Scholar 

  • Beeri R, Guerrero JL, Supple G et al (2002) New efficient catheter-based system for myocardial gene delivery. Circulation 106:1756–1759

    Article  PubMed  CAS  Google Scholar 

  • Bekeredjian R, Chen S, Frenkel PA et al (2003) Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation 108:1022–1026

    Article  PubMed  Google Scholar 

  • Boecker W, Bernecker OY, Wu JC et al (2004) Cardiac-specific gene expression facilitated by an enhanced myosin light chain promoter. Mol Imaging 3:69–75

    Article  PubMed  CAS  Google Scholar 

  • Boekstegers P, von Degenfeld G, Giehrl W et al (2000) Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins. Gene Ther 7:232–240

    Article  PubMed  CAS  Google Scholar 

  • Brooks AR, Harkins RN, Wang P et al (2004) Transcriptional silencing is associated with extensive methylation of the CMV promoter following adenoviral gene delivery to muscle. J Gene Med 6:395–404

    Article  PubMed  CAS  Google Scholar 

  • Champion HC, Georgakopoulos D, Haldar S et al (2003) Robust adenoviral and adeno-associated viral gene transfer to the in vivo murine heart: application to study of phospholamban physiology. Circulation 108:2790–2797

    Article  PubMed  CAS  Google Scholar 

  • Chirmule N, Moscioni AD, Qian Y et al (1999) Fas–Fas ligand interactions play a major role in effector functions of cytotoxic T lymphocytes after adenovirus vector-mediated gene transfer. Hum Gene Ther 10:259–269

    Article  PubMed  CAS  Google Scholar 

  • Chu D, Sullivan CC, Weitzman MD, Du L et al (2003) Direct comparison of efficiency and stability of gene transfer into the mammalian heart using adeno-associated virus versus adenovirus vectors. J Thorac Cardiovasc Surg 126:671–679

    Article  PubMed  CAS  Google Scholar 

  • Cordier L, Gao GP, Hack AA et al (2001) Muscle-specific promoters may be necessary for adeno-associated virus-mediated gene transfer in the treatment of muscular dystrophies. Hum Gene Ther 12:205–215

    Article  PubMed  CAS  Google Scholar 

  • Davidson MJ, Jones JM, Emani SM et al (2001) Cardiac gene delivery with cardiopulmonary bypass. Circulation 104:131–133

    PubMed  CAS  Google Scholar 

  • de Fougerolles A, Vornlocher HP, Maraganore J et al (2007) Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6:443–453

    Article  PubMed  Google Scholar 

  • Ding Z, Fach C, Sasse A et al (2004) A minimally invasive approach for efficient gene delivery to rodent hearts. Gene Ther 11:260–265

    Article  PubMed  CAS  Google Scholar 

  • Ding W, Zhang L, Yan Z et al (2005) Intracellular trafficking of adeno-associated viral vectors. Gene Ther 12:873–880

    Article  PubMed  CAS  Google Scholar 

  • Donahue JK, Kikkawa K, Johns DC et al (1997) Ultrarapid, highly efficient viral gene transfer to the heart. Proc Natl Acad Sci USA 94:4664–4668

    Article  PubMed  CAS  Google Scholar 

  • Donahue JK, Kikkawa K, Thomas AD et al (1998) Acceleration of widespread adenoviral gene transfer to intact rabbit hearts by coronary perfusion with low calcium and serotonin. Gene Ther 5:630–634

    Article  PubMed  CAS  Google Scholar 

  • Donsante A, Miller DG, Li Y et al (2007) AAV vector integration sites in mouse hepatocellular carcinoma. Science 317:477

    Article  PubMed  CAS  Google Scholar 

  • Du L, Kido M, Lee DV et al (2004) Differential myocardial gene delivery by recombinant serotype-specific adeno-associated viral vectors. Mol Ther 10:604–608

    Article  PubMed  CAS  Google Scholar 

  • El-Armouche A, Singh J, Naito H et al (2007) Adenovirus-delivered short hairpin RNA targeting PKCalpha improves contractile function in reconstituted heart tissue. J Mol Cell Cardiol 43:371–376

    Article  PubMed  CAS  Google Scholar 

  • Fechner H, Suckau L, Kurreck J et al (2007) Highly efficient and specific modulation of cardiac calcium homeostasis by adenovector-derived short hairpin RNA targeting phospholamban. Gene Ther 14:211–218

    Article  PubMed  CAS  Google Scholar 

  • French BA, Mazur W, Geske RS et al (1994) Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circulation 90:2414–2424

    PubMed  CAS  Google Scholar 

  • Franz WM, Mueller OJ, Hartong R et al (1997a) Transgenic animal models: new avenues in cardiovascular physiology. J Mol Med 75:115–129

    Article  PubMed  CAS  Google Scholar 

  • Franz WM, Rothmann T, Frey N et al (1997b) Analysis of tissue-specific gene delivery by recombinant adenoviruses containing cardiac-specific promoters. Cardiovasc Res 35:560–566

    Article  PubMed  CAS  Google Scholar 

  • Greber UF, Willetts M, Webster P et al (1993) Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75:477–486

    Article  PubMed  CAS  Google Scholar 

  • Gregorevic P, Blankinship MJ, Allen JM et al (2004) Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med 10:828–834

    Article  PubMed  CAS  Google Scholar 

  • Grimm D, Streetz KL, Jopling CL et al (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441:537–541

    Article  PubMed  CAS  Google Scholar 

  • Grines C, Rubanyi GM, Kleiman NS et al (2003) Angiogenic gene therapy with adenovirus 5 fibroblast growth factor-4 (Ad5FGF-4): a new option for the treatment of coronary artery disease. Am J Cardiol 92:24N–31N

    Article  PubMed  CAS  Google Scholar 

  • Griscelli F, Gilardi-Hebenstreit P, Hanania N et al (1998) Heart-specific targeting of beta-galactosidase by the ventricle-specific cardiac myosin light chain 2 promoter using adenovirus vectors. Hum Gene Ther 9:1919–1928

    Article  PubMed  CAS  Google Scholar 

  • Hajjar RJ, Schmidt U, Matsui T et al (1998) Modulation of ventricular function through gene transfer in vivo. Proc Natl Acad Sci USA 95:5251–5256

    Article  PubMed  CAS  Google Scholar 

  • Hedman M, Hartikainen J, Syvänne M, Stjernvall J, Hedman A, Kivelä A, Vanninen E, Mussalo H, Kauppila E, Simula S, Närvänen O, Rantala A, Peuhkurinen K, Nieminen MS, Laakso M, Ylä-Herttuala S (2003) Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation 107(21):2677–2683

    Article  PubMed  CAS  Google Scholar 

  • Hoshijima M, Ikeda Y, Iwanaga Y et al (2002) Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery. Nat Med 8:864–871

    PubMed  CAS  Google Scholar 

  • Ikeda Y, Gu Y, Iwanaga Y et al (2002) Restoration of deficient membrane proteins in the cardiomyopathic hamster by in vivo cardiac gene transfer. Circulation 105:502–508

    Article  PubMed  CAS  Google Scholar 

  • Inagaki K, Fuess S, Storm TA et al (2006) Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol Ther 14:45–53

    Article  PubMed  CAS  Google Scholar 

  • Iwanaga Y, Hoshijima M, Gu Y et al (2004) Chronic phospholamban inhibition prevents progressive cardiac dysfunction and pathological remodeling after infarction in rats. J Clin Invest 113:727–736

    PubMed  CAS  Google Scholar 

  • Iwatate M, Gu Y, Dieterle T et al (2003) In vivo high-efficiency transcoronary gene delivery and Cre-LoxP gene switching in the adult mouse heart. Gene Ther 10:1814–1820

    Article  PubMed  CAS  Google Scholar 

  • Jooss K, Yang Y, Fisher KJ et al (1998) Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers. J Virol 72: 4212–4223

    PubMed  CAS  Google Scholar 

  • Kastrup J, Jorgensen E, Ruck A et al (2005) Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris A randomized double-blind placebo-controlled study: the Euroinject One trial. J Am Coll Cardiol 45:982–988

    Article  PubMed  CAS  Google Scholar 

  • Kawada T, Nakazawa M, Nakauchi S et al (2002) Rescue of hereditary form of dilated cardiomyo-pathy by rAAV-mediated somatic gene therapy: amelioration of morphological findings, sarcolemmal permeability, cardiac performances, and the prognosis of TO-2 hamsters. Proc Natl Acad Sci USA 99:901–906

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto S, Shi Q, Nitta Y et al (2005) Widespread and early myocardial gene expression by adeno-associated virus vector type 6 with a beta-actin hybrid promoter. Mol Ther 11:980–985

    Article  PubMed  CAS  Google Scholar 

  • Kay MA (2007) AAV vectors and tumorigenicity. Nat Biotechnol 25:1111–1113

    Article  PubMed  CAS  Google Scholar 

  • Kaye DM, Preovolos A, Marshall T et al (2007) Percutaneous cardiac recirculation-mediated gene transfer of an inhibitory phospholamban peptide reverses advanced heart failure in large animals. J Am Coll Cardiol 50:253–260

    Article  PubMed  CAS  Google Scholar 

  • Kern A, Schmidt K, Leder C et al (2003) Identification of a heparin-binding motif on adeno-associated virus type 2 capsids. J Virol 77:11072–11081

    Article  PubMed  CAS  Google Scholar 

  • Kochanek S, Clemens PR, Mitani K et al (1996) A new adenoviral vector: replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and beta-galactosidase. Proc Natl Acad Sci USA 93:5731–5736

    Article  PubMed  CAS  Google Scholar 

  • Kornowski R, Leon MB, Fuchs S et al (2000) Electromagnetic guidance for catheter-based transendocardial injection: a platform for intramyocardial angiogenesis therapy. Results in normal and ischemic porcine models. J Am Coll Cardiol 35:1031–1039

    Article  PubMed  CAS  Google Scholar 

  • Lamping KG, Rios CD, Chun JA et al (1997) Intrapericardial administration of adenovirus for gene transfer. Am J Physiol 272:H310–H317

    PubMed  CAS  Google Scholar 

  • LaPointe MC, Yang XP, Carretero OA et al (2002) Left ventricular targeting of reporter gene expression in vivo by human BNP promoter in an adenoviral vector. Am J Physiol Heart Circ Physiol 283:H1439–H1445

    PubMed  CAS  Google Scholar 

  • Lee Y, Kim M, Han J et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  PubMed  CAS  Google Scholar 

  • Li SD, Huang L (2006) Gene therapy progress and prospects: non-viral gene therapy by systemic delivery. Gene Ther 13:1313–1319

    Article  PubMed  CAS  Google Scholar 

  • Logeart D, Hatem SN, Heimburger M et al (2001) How to optimize in vivo gene transfer to cardiac myocytes: mechanical or pharmacological procedures? Hum Gene Ther 12:1601–1610

    Article  PubMed  CAS  Google Scholar 

  • March KL, Woody M, Mehdi K et al (1999) Efficient in vivo catheter-based pericardial gene transfer mediated by adenoviral vectors. Clin Cardiol 22:I23–I29

    Article  PubMed  CAS  Google Scholar 

  • McCarty DM, Young SM Jr, Samulski RJ (2004) Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet 38:819–845

    Article  PubMed  CAS  Google Scholar 

  • Melo LG, Agrawal R, Zhang L et al (2002) Gene therapy strategy for long-term myocardial protection using adeno-associated virus-mediated delivery of heme oxygenase gene. Circulation 105:602–607

    Article  PubMed  CAS  Google Scholar 

  • Merl S, Michaelis C, Jaschke B et al (2005) Targeting 2A protease by RNA interference attenuates coxsackieviral cytopathogenicity and promotes survival in highly susceptible mice. Circulation 111:1583–1592

    Article  PubMed  CAS  Google Scholar 

  • Muhlhauser J, Jones M, Yamada I et al (1996) Safety and efficacy of in vivo gene transfer into the porcine heart with replication-deficient, recombinant adenovirus vectors. Gene Ther 3:145–I53

    PubMed  CAS  Google Scholar 

  • Müller OJ, Kaul F, Weitzman MD et al (2003) Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat Biotechnol 21:1040–1046

    Article  PubMed  Google Scholar 

  • Müller OJ, Leuchs B, Pleger ST et al (2006) Improved cardiac gene transfer by transcriptional and transductional targeting of adeno-associated viral vectors. Cardiovasc Res 70:70–78

    Article  PubMed  Google Scholar 

  • Müller OJ, Katus HA, Bekeredjian R (2007) Targeting the heart with gene therapy-optimized gene delivery methods. Cardiovasc Res 73:453–462

    Article  PubMed  Google Scholar 

  • Nagata K, Marban E, Lawrence JH et al (2001) Phosphodiesterase inhibitor-mediated potentiation of adenovirus delivery to myocardium. J Mol Cell Cardiol 33:575–580

    Article  PubMed  CAS  Google Scholar 

  • Nakai H, Montini E, Fuess S et al (2003) AAV serotype 2 vectors preferentially integrate into active genes in mice. Nat Genet 34:297–302

    Article  PubMed  CAS  Google Scholar 

  • Nakai H, Fuess S, Storm TA et al (2005) Unrestricted hepatocyte transduction with adeno-associated virus serotype 8 vectors in mice. J Virol 79:214–224

    Article  PubMed  CAS  Google Scholar 

  • Pacak CA, Mah CS, Thattaliyath BD et al (2006) Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ Res 99:e3–e9

    Article  PubMed  CAS  Google Scholar 

  • Pachori AS, Melo LG, Hart ML et al (2004) Hypoxia-regulated therapeutic gene as a preemptive treatment strategy against ischemia/reperfusion tissue injury. Proc Natl Acad Sci USA 101:12282–12287

    Article  PubMed  CAS  Google Scholar 

  • Palomeque J, Chemaly ER, Colosi P et al (2007) Efficiency of eight different AAV serotypes in transducing rat myocardium in vivo. Gene Ther 14:989–997

    Article  PubMed  CAS  Google Scholar 

  • Perabo L, Buning H, Kofler DM et al (2003) In vitro selection of viral vectors with modified tropism: the adeno-associated virus display. Mol Ther 8:151–157

    Article  PubMed  CAS  Google Scholar 

  • Phillips MI, Tang Y, Schmidt-Ott K et al (2002) Vigilant vector: heart-specific promoter in an adeno-associated virus vector for cardioprotection. Hypertension 39:651–655

    Article  PubMed  CAS  Google Scholar 

  • Pleger ST, Boucher M, Most P et al (2007) Targeting myocardial beta-adrenergic receptor signaling and calcium cycling for heart failure gene therapy. J Card Fail 13:401–414

    Article  PubMed  CAS  Google Scholar 

  • Qin L, Ding Y, Pahud DR et al (1997) Promoter attenuation in gene therapy: interferon-gamma and tumor necrosis factor-alpha inhibit transgene expression. Hum Gene Ther 8:2019–2029

    Article  PubMed  CAS  Google Scholar 

  • Raake P, von Degenfeld G, Hinkel R et al (2004) Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins: comparison with surgical and percutaneous intramyocardial gene delivery. J Am Coll Cardiol 44:1124–1129

    Article  PubMed  CAS  Google Scholar 

  • Raake P, Hinkel R, Müller S et al (2008) Cardio-specific long-term gene expression in a porcine model after selective pressure-regulated retroinfusion of adeno-associated viral (AAV) vectors. Gene Ther 15:12–17

    Article  PubMed  CAS  Google Scholar 

  • Roelvink PW, Mi Lee G, Einfeld DA et al (1999) Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science 286:1568–1571

    Article  PubMed  CAS  Google Scholar 

  • Rutanen J, Rissanen TT, Markkanen JE et al (2004) Adenoviral catheter-mediated intramyocardial gene transfer using the mature form of vascular endothelial growth factor-D induces transmural angiogenesis in porcine heart. Circulation 109:1029–1035

    Article  PubMed  CAS  Google Scholar 

  • Salva MZ, Himeda CL, Tai PW et al (2007) Design of tissue-specific regulatory cassettes for high-level rAAV-mediated expression in skeletal and cardiac muscle. Mol Ther 15:320–329

    Article  PubMed  CAS  Google Scholar 

  • Sasano T, Kikuchi K, McDonald AD et al (2007) Targeted high-efficiency, homogeneous myocardial gene transfer. J Mol Cell Cardiol 42:954–961

    Article  PubMed  CAS  Google Scholar 

  • Schiedner G, Hertel S, Johnston M et al (2002) Variables affecting in vivo performance of high-capacity adenovirus vectors. J Virol 76:1600–1609

    Article  PubMed  CAS  Google Scholar 

  • Schmidt U, Hajjar RJ, Kim CS et al (1999) Human heart failure: cAMP stimulation of SR Ca2+-ATPase activity and phosphorylation level of phospholamban. Am J Physiol 277:H474–H480

    PubMed  CAS  Google Scholar 

  • Schnepp BC, Jensen RL, Chen CL et al (2005) Characterization of adeno-associated virus genomes isolated from human tissues. J Virol 79:14793–14803

    Article  PubMed  CAS  Google Scholar 

  • Shohet RV, Chen S, Zhou YT et al (2000) Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium. Circulation 101:2554–2556

    PubMed  CAS  Google Scholar 

  • Snove O Jr, Rossi JJ (2006) Expressing short hairpin RNAs in vivo. Nat Methods 3:689–695

    Article  PubMed  CAS  Google Scholar 

  • Su H, Joho S, Huang Y et al (2004) Adeno-associated viral vector delivers cardiac-specific and hypoxia-inducible VEGF expression in ischemic mouse hearts. Proc Natl Acad Sci USA 101:16280–16285

    Article  PubMed  CAS  Google Scholar 

  • Sugano M, Tsuchida K, Hata T et al (2005) RNA interference targeting SHP-1 attenuates myocardial infarction in rats. FASEB J 19:2054–2056

    PubMed  CAS  Google Scholar 

  • Summerford C, Samulski RJ (1998) Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 72:1438–1445

    PubMed  CAS  Google Scholar 

  • Sun B, Zhang H, Franco LM et al (2005) Correction of glycogen storage disease type II by an adeno-associated virus vector containing a muscle-specific promoter. Mol Ther 11:889–898

    Article  PubMed  CAS  Google Scholar 

  • Svensson EC, Marshall DJ, Woodard K et al (1999) Efficient and stable transduction of cardiomyocytes after intramyocardial injection or intracoronary perfusion with recombinant adeno-associated virus vectors. Circulation 99:201–205

    PubMed  CAS  Google Scholar 

  • Vandenberghe LH, Wang L, Somanathan S et al (2006) Heparin binding directs activation of T cells against adeno-associated virus serotype 2 capsid. Nat Med 12:967–971

    Article  PubMed  CAS  Google Scholar 

  • Vandendriessche T, Thorrez L, Acosta-Sanchez A et al (2007) Efficacy and safety of adeno-associated viral vectors based on serotype 8 and 9 vs. lentiviral vectors for hemophilia B gene therapy. J Thromb Haemost 5:16–24

    Article  PubMed  CAS  Google Scholar 

  • Vassalli G, Bueler H, Dudler J et al (2003) Adeno-associated virus (AAV) vectors achieve prolonged transgene expression in mouse myocardium and arteries in vivo: a comparative study with adenovirus vectors. Int J Cardiol 90:229–238

    Article  PubMed  Google Scholar 

  • Wang Z, Zhu T, Qiao C et al (2005) Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 23:321–328

    Article  PubMed  CAS  Google Scholar 

  • Watanabe A, Arai M, Yamazaki M et al (2004) Phospholamban ablation by RNA interference increases Ca2+ uptake into rat cardiac myocyte sarcoplasmic reticulum. J Mol Cell Cardiol 37:691–698

    Article  PubMed  CAS  Google Scholar 

  • Waterkamp DA, Müller OJ, Ying Y et al (2006) Isolation of targeted AAV2 vectors from novel virus display libraries. J Gene Med 8:1307–1319

    Article  PubMed  CAS  Google Scholar 

  • Wright MJ, Wightman LM, Lilley C et al (2001) In vivo myocardial gene transfer: optimization, evaluation and direct comparison of gene transfer vectors. Basic Res Cardiol 96:227–236

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Nunes FA, Berencsi K et al (1994) Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA 91:4407–4411

    Article  PubMed  CAS  Google Scholar 

  • Zhu T, Zhou L, Mori S et al (2005) Sustained whole-body functional rescue in congestive heart failure and muscular dystrophy hamsters by systemic gene transfer. Circulation 112:2650–2659

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. J. Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, O.J., Katus, H.A. (2008). Cardiac Delivery of Nucleic Acids by Transcriptional and Transductional Targeting of Adeno-Associated Viral Vectors. In: Erdmann, V.A., Poller, W., Barciszewski, J. (eds) RNA Technologies in Cardiovascular Medicine and Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78709-9_9

Download citation

Publish with us

Policies and ethics