Skip to main content

Applications of Ribozymes and Pyrrole–Imidazole Polyamides for Cardiovascular and Renal Diseases

  • Chapter
  • 363 Accesses

Abstract

Ribozymes are RNA molecules that cleave a phosphodiester bond in the appropriate target RNAs in a sequence-specific manner, thereby inhibiting the expression of specific gene products. Ribozymes have progressed from objects of scientific study to potential therapeutic agents for treatment of both acquired and inherited diseases. We have developed ribozymes for therapy of arterial proliferative diseases, such as coronary artery restenosis after angioplasty or stent implantation, hypertensive vascular diseases, atherosclerosis, and progressive renal diseases. We designed nuclease resistant chimeric DNA–RNA hammerhead ribozymes targeting platelet-derived growth factor (PDGF) A-chain and transforming growth factor (TGF)-β1, which effectively and specifically inhibited the exaggerated growth of vascular smooth muscle cells from hypertensive rats in vitro, the arterial stenosis after injury and the renal sclerosis in hypertensive rats in vivo. Pyrrole-imidazole (PI) polyamides are novel gene-silencing compounds, which bind to minor groove of double-strand DNA in the sequence-specific manner to suppress target gene expression. We have developed PI polyamide targeting TGF-β1 promoter and lectin-like oxidized low density lipoprotein receptor-1 (LOX-1). The polyamide to TGF-β1 inhibited expression of TGF-β1 gene and protein in vitro and in vivo. Prolonged treatments with the polyamide to TGF-β1 markedly improved the progressive renal dysfunction without any side effects in hypertensive rats. PI polyamide to LOX-1 significantly suppressed the apoptosis of endothelial cells in vitro and the arterial stenosis after angioplasty in vivo. These findings suggest that ribozymes and PI polyamides will be effective gene suppressive agents for cardiovascular and renal diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Ang II:

Angiotensin II

Im:

N-methylimidazole

LOX-1:

Lectin-like oxidized low-density lipoprotein receptor-1

PDGF:

Platelet-derived growth factor

PI:

Pyrrole-Imidazole

Py:

N-methylpyrrole

SHR:

Spontaneously hypertensive rats

siRNA:

Small interference RNA

TGF:

Transforming growth factor

VSMC:

Vascular smooth muscle cell

References

  • Aigner A, Fischer D, Merdan T et al (2002) Delivery of unmodified bioactive ribozymes by an RNA-stabilizing polyethylenimine (LMW-PEI) efficiently down-regulates gene expression. Gene Ther 9:1700–1707

    Article  PubMed  CAS  Google Scholar 

  • Ando H, Fukuda N, Kotani M et al (2004) Chimeric DNA–RNA hammerhead ribozyme targeting TGF-β1 mRNA inhibits neointima formation in rat carotid artery after balloon injury. Eur J Pharmacol 483:207–214

    Article  PubMed  CAS  Google Scholar 

  • Belitsky JM, Leslie SJ, Arora PS et al (2002) Cellular uptake of N-methylpyrrole/N-methylimidazole polyamide-dye conjugates. Bioorg Med Chem 10:3313–3318

    Article  PubMed  CAS  Google Scholar 

  • Cameron FH, Jennings PA (1994) Multiple domains in a ribozyme construct confer increased suppressive activity in monkey cells. Antisense Res Dev 4:87–94

    PubMed  CAS  Google Scholar 

  • Casscells W (1992) Migration of smooth muscle and endothelial cells. Critical events in restenosis. Circulation 86:723–729

    PubMed  CAS  Google Scholar 

  • Cech TR, Zaug AJ, Grabowski PJ (1981) In vitro splicing of the ribosomal RNA precursor of tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27:487–496

    Article  PubMed  CAS  Google Scholar 

  • Chamberlin SI, Merino EJ, Weeks KM (2002) Catalysis of amide synthesis by RNA phosphodiester and hydroxyl groups. Proc Natl Acad Sci USA 99:14688–14693

    Article  PubMed  CAS  Google Scholar 

  • Cohen DJ, Bakhai A, Shi C et al (2004) Cost-effectiveness of sirolimus-eluting stents for treatment of complex coronary stenoses: results from the sirolimus-eluting balloon expandable stent in the treatment of patients with de novo native coronary artery lesions (SIRIUS) trial. Circulation 110:508–514

    Article  PubMed  Google Scholar 

  • Colombo A, Drzewiecki J, Banning A et al (2003) Randomized study to assess the effectiveness of slow- and moderate-release polymer-based paclitaxel-eluting stents for coronary artery lesions. Circulation 108:788–794

    Article  PubMed  CAS  Google Scholar 

  • Dahly AJ, Hoagland KM, Flasch AK et al (2002) Antihypertensive effects of chronic anti-TGF beta antibody therapy in Dahl S rats. Am J Physiol Regul Integr Comp Physiol 283:R757–R767

    PubMed  CAS  Google Scholar 

  • Dickinson LA, Gulizia RJ, Trauger JW et al (1998) Inhibition of RNA polymerase II transcription in human cells by synthetic DNA-binding ligands. Proc Natl Acad Sci USA 95:12890–12895

    Article  PubMed  CAS  Google Scholar 

  • Fischman DL, Leon MB, Baim DS et al (1994) A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigator. N Engl J Med 331:496–501

    Article  PubMed  CAS  Google Scholar 

  • Frimerman A, Welch PJ, Jin X et al (1999) Chimeric DNA–RNA hammerhead ribozyme to proliferating cell nuclear antigen reduces stent-induced stenosis in a porcine coronary model. Circulation 99:697–703

    PubMed  CAS  Google Scholar 

  • Fukuda N (1997) Molecular mechanisms of the exaggerated growth of vascular smooth muscle cells in hypertension. J Atheroscler Thromb 4:65–72

    PubMed  CAS  Google Scholar 

  • Fukuda N, Kubo A, Izumi Y et al (1995) Characteristics and expression of transforming growth factor-beta receptor subtypes on vascular smooth muscle cells from spontaneously hypertensive rats. J Hypertens 13:831–837

    Article  PubMed  CAS  Google Scholar 

  • Fukuda N, Hu W-Y, Kubo A et al (1998) Abnormal regulation of transforming growth factor-beta receptors on vascular smooth muscle cells from spontaneously hypertensive rats by angiotensin II. Hypertension 31:672–677

    PubMed  CAS  Google Scholar 

  • Fukuda N, Satoh C, Hu W-Y et al (1999a) Production of angiotensin II by homogeneous cultures of vascular smooth muscle cells from spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol 19:1210–1217

    PubMed  CAS  Google Scholar 

  • Fukuda N, Hu W-Y, Satoh C et al (1999b) Contribution of synthetic phenotype on the enhanced angiotensin II-generating system in vascular smooth muscle cells from spontaneously hypertensive rats. J Hypertens 17:1099–1107

    Article  PubMed  CAS  Google Scholar 

  • Gottesfeld JM, Neely L, Trauger JW et al (1997) Regulation of gene expression by small molecules. Nature 387:202–205

    Article  PubMed  CAS  Google Scholar 

  • Gu JL, Pei H, Thomas L et al (2001) Ribozyme-mediated inhibition of rat leukocyte-type 12-lipoxygenase prevents intimal hyperplasia in balloon-injured rat carotid arteries. Circulation 103:1446–1452

    PubMed  CAS  Google Scholar 

  • Guerrier-Takada CG, Altman S (1984) Catalytic activity of an RNA molecule prepared by transcription in vitro. Science 223:285–286

    Article  PubMed  CAS  Google Scholar 

  • Hu WY, Fukuda N, Satoh C et al (2000) Phenotypic modulation by fibronectin enhances the angiotensin II-generating system in cultured vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 20:1500–1505

    PubMed  CAS  Google Scholar 

  • Hu WY, Fukuda N, Nakayama M et al (2001a) Inhibition of vascular smooth muscle cell proliferation by DNA-RNA chimeric hammerhead ribozyme targeting to rat platelet-derived growth factor A-chain mRNA. J Hypertens 19:203–212

    Article  PubMed  CAS  Google Scholar 

  • Hu WY, Fukuda N, Kishioka H et al (2001b) Hammerhead ribozyme targeting human platelet-derived growth factor A-chain mRNA inhibited the proliferation of human vascular smooth muscle cells. Atherosclerosis 158:321–329

    Article  PubMed  CAS  Google Scholar 

  • Hu WY, Fukuda N, Kotani M et al (2002) Adenovirus-mediated transfer of ribozyme targeting platelet-derived growth factor A-chain mRNA inhibits growth of vascular smooth muscle cells from spontaneously hypertensive rats. J Cardiovasc Pharmacol 39:858–865

    Article  PubMed  CAS  Google Scholar 

  • Iakovou I, Sangiorgi GM, Stankovic G et al (2004) Effectiveness of sirolimus-eluting stent implantation for treatment of in-stent restenosis after brachytherapy failure. Am J Cardiol 94:351–354

    Article  PubMed  CAS  Google Scholar 

  • Isner JM (2002) Myocardial gene therapy. Nature 415:234–239

    Article  PubMed  CAS  Google Scholar 

  • Johnsson A, Heldin CH, Westermark B et al (1982) Platelet-derived growth factor: identification of constituent polypeptide chains. Biochem Biophys Res Commun 104:66–74

    Article  PubMed  CAS  Google Scholar 

  • Kishioka H, Fukuda N, Watanabe Y et al (2001) Effects of PDGF A-chain antisense oligodeoxynucleotides on growth of cardiovascular organs in stroke-prone spontaneously hypertensive rats. Am J Hypertens 14:439–445

    Article  PubMed  CAS  Google Scholar 

  • Kotani M, Fukuda N, Ando H et al (2003) Chimeric DNA-RNA hammerhead ribozyme targeting to PDGF A-chain mRNA specifically inhibited neointima formation of rat carotid artery after balloon injury. Cardiovasc Res 57:265–276

    Article  PubMed  CAS  Google Scholar 

  • Kronenwett R, Haas R, Sczakiel G (1996) Kinetic selectivity of complementary nucleic acids: bcr-abl-directed antisense RNA and ribozymes. J Mol Biol 259:632–644

    Article  PubMed  CAS  Google Scholar 

  • Kubo A, Fukuda N, Soma M et al (1996) Inhibitory effect of an angiotensin II type 1 receptor antagonist on growth of vascular smooth muscle cells from spontaneously hypertensive rats. J Cardiovasc Pharmacol 27:58–63

    Article  PubMed  CAS  Google Scholar 

  • Kubo A, Fukuda N, Teng J et al (2000) Angiotensin II regulates the cell cycle of vascular smooth muscle cells from SHR. Am J Hypertens 13:1117–1124

    Article  PubMed  CAS  Google Scholar 

  • Lai Y, Fukuda N, Ueno T et al (2005) Synthetic pyrrole-imidazole polyamide inhibits expression of the human transforming growth factor-beta1 gene. J Pharmacol Exp Therap 315:571–575

    Article  CAS  Google Scholar 

  • Lin ZH, Fukuda N, Suzuki R et al (2004) Adenovirus-encoded hammerhead ribozyme to PDGF A-chain mRNA inhibits neointima formation after arterial injury. J Vasc Res 41:305–313

    Article  PubMed  CAS  Google Scholar 

  • Lonnberg T, Lonnberg H (2005) Chemical models for ribozyme action. Curr Opin Chem Biol 9:665–673

    Article  PubMed  Google Scholar 

  • Macejak DG, Lin H, Webb S et al (1999) Adenovirus-mediated expression of a ribozyme to c-myb mRNA inhibits smooth muscle cell proliferation and neointima formation in vivo. J Virol 73:7745–7751

    PubMed  CAS  Google Scholar 

  • Macejak DG, Jensen KL, Jamison S et al (2000) Inhibition of hepatitis C virus (HCV)-RNA-dependent translation and replication of a chimeric HCV Poliovirus using synthetic stabilized ribozymes. Hepatology 31:769–776

    Article  PubMed  CAS  Google Scholar 

  • Majesky MW (1994) Neointima formation after acute vascular injury. Role of counteradhesive extracellular matrix proteins. Tex Heart Inst J 21:78–85

    PubMed  CAS  Google Scholar 

  • Majesky MW, Lindner V, Twardzik DR (1991) Production of transforming growth factor beta 1 during repair of arterial injury. J Clin Invest 88:904–910

    Article  PubMed  CAS  Google Scholar 

  • Massague J (1987) The TGF-βl family of growth and differentiation factors. Cell 49:437–438

    Article  PubMed  CAS  Google Scholar 

  • Matsuda H, Fukuda N, Ueno T et al (2006) Development of gene silencing pyrrole-imidazole polyamide targeted to the TGF-β1 promoter for treatment of progressive renal diseases. J Am Soc Nephrol 17:422–432

    Article  PubMed  CAS  Google Scholar 

  • Merdan T, Kopecek J, Kissel T (2002) Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Deliv Rev 54:715–758

    Article  PubMed  CAS  Google Scholar 

  • Milligan JF, Groebe DR, Witherell GW et al (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res 15:8783–8798

    Article  PubMed  CAS  Google Scholar 

  • Morales TI, Roberts AB (1988) Transforming growth factor fi regulates the metabolism of proteoglycans in bovine cartilage organ cultures. J Biol Chem 263:12828–12831

    PubMed  CAS  Google Scholar 

  • Murakami M, Ichisaka T, Maeda M et al (2004) mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol 24:6710–6718

    Article  PubMed  CAS  Google Scholar 

  • Murty MS, Sugiyama H (2004) Biology of N-methylpyrrole-N-methylimidazole hairpin polyamide. Biol Pharm Bull 27:468–474

    Article  PubMed  CAS  Google Scholar 

  • Nilsson J, Sjolund M, Palmberg L et al (1985) Arterial smooth muscle cells in primary culture produce a platelet-derived growth factor-like protein. Proc Natl Acad Sci 82:4418–4422

    Article  PubMed  CAS  Google Scholar 

  • Okuda S, Languino LR, Ruoalahti E et al (1990) Elevated expression of transforming growth factor-beta and proteoglycan production in experimental glomerulonephritis. Possible role in expansion of the mesangial extracellular matrix. J Clin Invest 86:453–462

    Article  PubMed  CAS  Google Scholar 

  • Park SJ, Shim WH, Ho DS et al (2003) A paclitaxel-eluting stent for the prevention of coronary restenosis. N Engl J Med 348:1537–1545

    Article  PubMed  CAS  Google Scholar 

  • Pieken WA, Olsen DB, Benseler F et al (1991) Kinetic characterization of ribonuclease-resistant 2P-modified hammerhead ribozymes. Science 253:314–317

    Article  PubMed  CAS  Google Scholar 

  • Regar E, Serruys PW, Bode C et al (2002) Angiographic findings of the multicenter randomized study with the sirolimus-eluting bx velocity balloon-expandable stent (RAVEL): sirolimus-eluting stents inhibit restenosis irrespective of the vessel size. Circulation 106:1949–1956

    Article  PubMed  CAS  Google Scholar 

  • Roberts AB, Sporn MB, Assoian RK et al (1986) Transforming growth factor type-β rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Nati Acad Sci USA 83:4167–4171

    Article  CAS  Google Scholar 

  • Saksmerprome V, Burke DH (2004) Deprotonation stimulates productive folding in allosteric TRAP hammerhead ribozymes. J Mol Biol 341:685–694

    Article  PubMed  CAS  Google Scholar 

  • Sarver N, Cantin EM, Chang PS et al (1990) Ribozymes as potential anti-HIV-1 therapeutic agents. Science 247:1222–1225

    Article  PubMed  CAS  Google Scholar 

  • Sata M, Saiura A, Kunisato A et al (2002) RHematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 8:403–409

    Article  PubMed  CAS  Google Scholar 

  • Satoh C, Fukuda N, Hu W-Y et al (2001) Role of endogenous angiotensin II in the increased expression of growth factors in vascular smooth muscle cells from spontaneously hypertensive rats. J Cardiovasc Pharmacol 37:108–118

    Article  PubMed  CAS  Google Scholar 

  • Saxena SK, Ackerman EJ (1990) Ribozymes correctly cleave a model substrate and endogenous RNA in vivo. J Biol Chem 265:17106–17109

    PubMed  CAS  Google Scholar 

  • Sawamura T, Kume N, Aoyama T et al (1997) An endothelial receptor for oxidized low-density lipoprotein. Nature 386:73–77

    Article  PubMed  CAS  Google Scholar 

  • Scherer LJ, Rossi JJ (2003) Approaches for the sequence-specific knock-down of mrna. Nat Biotechnol 21:1457–1465

    Article  PubMed  CAS  Google Scholar 

  • Serruys PW, de Jaegere P, Kiemeneij F et al (1994) A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. N Engl J Med 331:489–495

    Article  PubMed  CAS  Google Scholar 

  • Shimayama T, Nishikawa S, Taira K (1995) Generality of the NUX rule: kinetic analysis of the results of systematic mutations in the trinucleotide at the cleavage site of hammerhead ribozymes. Biochemistry 34:3649–3654

    Article  PubMed  CAS  Google Scholar 

  • Sporn MB, Roberts AB, Wakefield LM et al (1986) Transforming growth factor-f: biological function and chemical structure. Science 233:532–534

    Article  PubMed  CAS  Google Scholar 

  • Su JZ, Fukuda N, Hu W-Y et al (2000) Ribozyme to human TGF-β1 mRNA inhibits the proliferation of human vascular smooth muscle cells. Biochem Biophys Res Commun 19:401–407

    Article  Google Scholar 

  • Tahira Y, Fukuda N, Endo M et al (2002) Transforming growth factor-beta expression in cardiovascular organs in stroke-prone spontaneously hypertensive rats with the development of hypertension. Hypertens Res 25:911–918

    Article  PubMed  CAS  Google Scholar 

  • Tahira Y, Fukuda N, Endo M et al (2007) Chimeric DNA-RNA hammerhead ribozyme targeting TGF-β1 mRNA efficiently ameliorated renal injury in hypertensive rats. J Hypertens 25:671–678

    Article  PubMed  CAS  Google Scholar 

  • Taylor NR, Kaplan BE, Swiderski P et al (1992) Chimeric DNA-RNA hammerhead ribozymes have enhanced in vitro catalytic efficiency and increased stability in vivo. Nucleic Acids Res 20:4559–4565

    Article  PubMed  CAS  Google Scholar 

  • Teng J, Fukuda N, Hu WY et al (2000) DNA–RNA chimeric hammerhead ribozyme to transforming growth factor-β1 mRNA inhibits the exaggerated growth of vascular smooth muscle cells from spontaneously hypertensive rats. Cardiovasc Res 48:138–147

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Ayers DF, Malmstrom TA et al (1995) Improved accumulation and activity of ribozymes expressed from a tRNA-based RNA polymerase III promoter. Nucleic Acids Res 23:2259–2268

    Article  PubMed  CAS  Google Scholar 

  • Trauger JW, Baird EE, Dervan PB (1996) Recognition of DNA by designed ligands at subnanomolar concentrations. Nature 382:559–561

    Article  PubMed  CAS  Google Scholar 

  • Usman N, Stinchcomb DT (1996) Design, synthesis and function of therapeutic hammerhead ribozymes. Nucleic Acids Mol Biol 10:243–264

    CAS  Google Scholar 

  • Werner GS, Emig U, Krack A et al (2004) Sirolimus-eluting stents for the prevention of restenosis in a worst-case scenario of diffuse and recurrent in-stent restenosis. Catheter Cardiovasc Interv 63:259–264

    Article  PubMed  Google Scholar 

  • White S, Baird EE, Dervan PB (1997) On the pairing rules for recognition in the minor groove of DNA by pyrrole–imidazole polyamides. Chem Biol 4:569–578

    Article  PubMed  CAS  Google Scholar 

  • White S, Szewczyk JW, Turner JM et al (1998) Recognition of the four Watson-Crick base pairs in the DNA minor groove by synthetic ligands. Nature 391:468–471

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Noble NA, Cohen AH et al (1996) Expression of transforming growth factor-beta isoforms in human glomerular diseases. Kidney Int 49:461–469

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Morishita R, Tomita N et al (2000) Ribozyme oligonucleotides against transforming growth factor-beta inhibited neointimal formation after vascular injury in rat model: potential application of ribozyme strategy to treat cardiovascular disease. Circulation 102:1308–1314

    PubMed  CAS  Google Scholar 

  • Zoumadakis M, Neubert WJ, Tabler M (1994) The influence of imperfectly paired helices I and III on the catalytic activity of hammerhead ribozymes. Nucleic Acids Res 22:5271–5278

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Fukuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yao, E.H., Fukuda, N. (2008). Applications of Ribozymes and Pyrrole–Imidazole Polyamides for Cardiovascular and Renal Diseases. In: Erdmann, V.A., Poller, W., Barciszewski, J. (eds) RNA Technologies in Cardiovascular Medicine and Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78709-9_11

Download citation

Publish with us

Policies and ethics