Skip to main content

Micromechanical Simulation of Composites

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson MP, Srolovitz DJ, Crest GS, Sahni PS (1984) Monte Carlo simulation of grain growth in textured metals. Acta metal. 32, pp. 783-789.

    Article  Google Scholar 

  2. Borbély A, Biermenn H, Hartmann O, Buffière JY (2003) The influence of the free surface on the fracture of alumina particles in an Al-Al2O3 metal-matrix composite. Comput. Mater. Sci. 26, pp. 183-188.

    Article  Google Scholar 

  3. Buffiere J, Maire E, Cloetens P, Lormand G, Fougères R (1999) Characterization of internal damage in a MMC using X-ray synchrotron phase contrast microtomography. Acta mater. 47, pp. 1613-1625.

    Article  Google Scholar 

  4. Cherepanov OI (2003) Numerical solution of some quasisatic problems in mesomechanics. SB RAS Publishing, Novosibirsk [in Russian].

    Google Scholar 

  5. Dudarev EF (1998) Microplastic deformation and yield stress of polycrystals. Tomsk University Press, Tomsk [in Russian].

    Google Scholar 

  6. Ghosh S, Nowak Z, Lee K (1997) Quantitative characterization and modeling of composite microstructures by Voronoi cells. Acta Mater. 45, pp. 2215-2237.

    Article  Google Scholar 

  7. Hibbit, Karlson&Sorensen Inc.: ABAQUS 6.2-1, Pawtucket, RI, USA, (ABACOM Software GmbH, Aachen).

    Google Scholar 

  8. Jacot A, Rappaz M (2002) A pseudo-front tracking technique for the modelling of solidification microstructures in multi-component alloys. Acta Mater. 50, pp. 1902-1926.

    Google Scholar 

  9. Jensen DJ (2002) Microstructural characterization in 3 dimensions. In: Pyrz R, Schjødt-Thomsen J, Rauhe JC, Thomsen T, Jensen LR (eds) New Challenges in Mesomechanics (Mesomechanics’2002), Proceedings of International Conference. Aalborg University, Aalborg, pp 541–547.

    Google Scholar 

  10. Krill CE, Chen L-Q (2002) Computer simulation of 3-D grain growth using a phase-field model. Acta Mater. 50, pp. 3057-3073.

    Article  Google Scholar 

  11. Makarov PV (2000) Localized deformation and fracture of polycrystals at mesolevel. Theor. Appl. Fract. Mech. 33, pp. 23-30.

    Article  Google Scholar 

  12. Makarov PV, Schmauder S, Cherepanov OI, Smolin IYu, Romanova VA, Balokhonov RR, Saraev DYu, Soppa E, Kizler P, Fischer G, Hu S, Ludwig M (2001) Simulation of elastic plastic deformation and fracture of materials at micro-, meso- and macrolevels. Theor. Appl. Frac. Mech. 37, pp. 183-244.

    Article  Google Scholar 

  13. Makarov PV, Smolin IY, Prokopinsky IP, and Stefanov YuP (1999) Modeling of development of localized plastic deformation and prefracture stage in mesovolumes of heterogeneous media. Int J. Fract. 100, pp. 121-131.

    Article  Google Scholar 

  14. Panin VE (Ed) (1998) Physical mesomechanics of heterogeneous media and computer-aided design of materials, Cambridge International Science Publishing, Cambridge

    Google Scholar 

  15. Panin VE (2003) Physical mesomechanics – a new paradigm at the interface between physics and mechanics of solids. Physical Mesomechanics. 6, pp. 9–36.

    Google Scholar 

  16. Panin AV, Klimenov VA, Abramovskaya NL, Son AA (2000) Defect flow nucleation and development on the surface of a deformed solid. Physical Mesomechanics. 3, pp. 83-92.

    Google Scholar 

  17. Panin VE (1998) Foundations of physical mesomechanics. Physical Mesomechanics. 1, pp. 5-22.

    Google Scholar 

  18. Pleshanov VS, Kibitkin VV, Panin VE (1999) Optico-television estimation of fracture behavior and crack-resistant characteristics on the mesoscale for polycrystals under cyclic loading. Physical Mesomechanics. 2, pp. 87–90.

    Google Scholar 

  19. Pyrz R, Schjødt-Thomsen J, Rauhe JC, Thomsen T, Jensen LR (Eds) (2002) New Challenges in Mesomechanics. Proceedings of Int. Conference. Aalborg University, Aalborg.

    Google Scholar 

  20. Raabe D (2002) Cellular automata in materials science with particular reference to recrystallization simulation. Annual Review of Materials Research. 32, pp. 53-76.

    Article  Google Scholar 

  21. Raabe D, Roters F, Barlat F, Long-Qing Chen (Eds) (2004) Continuum scale simulation of engineering materials. Wiley-VCH Verlag GmbH&Co. KGaA.

    Google Scholar 

  22. Romanova V, Balokhonov R, Karpenko N (2004) Numerical simulation of material behavior with explicit consideration for three-dimensional structural heterogeneity. Physical Mesomechanics. 7, pp. 71-79 [in Russian].

    Google Scholar 

  23. Romanova VA, Balokhonov RR, Makarov PV, Smolin IYu (2000) Numerical modeling of the behavior of a relaxing medium with an inhomogeneous structure under dynamic loading. Chem. Phys. Reports. 18, pp. 2191-2203.

    Google Scholar 

  24. Romanova V, Balokhonov R (2004) Numerical investigation of mechanical behavior of metal matrix composite Al/Al2O3 with explicit consideration for its three-dimensional structure. Physical mesomechanics. 7, pp. 27-31 [in Russian].

    Google Scholar 

  25. Romanova V, Balokhonov R (2004) Numerical simulation of elastoplastic deformation of artificial 3D-structures. In: Sih G, Kermanidis Th, Pantelakis Sp (eds) Multiscaling and Applied Science. Proceedings of International Conference “Mesomechanics-2004”. University of Patras, pp 266-272.

    Google Scholar 

  26. Romanova V, Balokhonov R, Makarov P, Schmauder S, Soppa E (2003) Simulation of elasto-plastic behaviour of an artificial 3D-structure under dynamic loading. Comput. Mater. Sci. 28, pp. 518-528.

    Article  Google Scholar 

  27. Romanova V, Balokhonov R, Soppa E, Schmauder S, Makarov P (2003) Simulation for elasto-plastic behavior of artificial 3D-structure under shock wave loading. J. Phys. IV France. 110, pp. 251-256.

    Article  Google Scholar 

  28. Sih G. (ed) (2000) Role of Mechanics for Development of Science and Technology. Proceedings of Int. Conference. Xi’an Jiaotong University.

    Google Scholar 

  29. Sih G, Kermanidis Th, Pantelakis Sp (eds) (2004) Multiscaling and Applied Science. Proceedings of International Conference “Mesomechanics-2004”. University of Patras.

    Google Scholar 

  30. Soppa E, Schmauder S, Fischer G (2004) Particle cracking and debonding criteria in Al/Al2O3 composites. In: Sih G, Kermanidis Th, Pantelakis Sp (eds) Multiscaling and Applied Science. Proceedings of International Conference “Mesomechanics-2004”. University of Patras, pp 312-317.

    Google Scholar 

  31. Soppa E, Schmauder S, Fischer G, Brollo J, Weber U (2003) Deformation and damage in Al/Al2O3. Comput. Mater. Sci. 28, pp. 574-586.

    Article  Google Scholar 

  32. Soppa E, Schmauder S, Fischer G, Thesing J, Ritter R (1999) Influence of the microstructure on the deformation behaviour of metal–matrix composites. Comput. Mater. Sci. 16, pp. 323-332.

    Article  Google Scholar 

  33. Toyooka S, Widiastuti R, Zhang Q, Kato H (2001) Dynamic observation of localized pulsation generated in the plastic deformation process by electronic speckle pattern interferometry. Jpn. Appl. Phys. 40, pp. 873-876.

    Article  Google Scholar 

  34. Wilkins M (1967) Calculation of elasto-plastic flow. In: Older O, Fernbach S, Rotenberg M (eds) Numerical methods in hydrodynamics. Mir, Moscow, pp 212–263.

    Google Scholar 

  35. Wilkins M, French S, Sorem M (1975) Finite-difference scheme of 3D-spatial and time-dependant problems. In: Numerical methods in fluid dynamics. Mir, Moscow, pp 115-119.

    Google Scholar 

  36. Wilkins M (1980) Use of artificial viscosity in multidimensional fluid dynamic calculations. Journal of Computational Physics 36, pp. 281-303.

    Article  MATH  MathSciNet  Google Scholar 

  37. Wilkins M, Guinan M (1976) Plane stress calculations with a two dimensional elastic-plastic computer program. Preprint UCRL-77251, University of California, Lawrence Livermore Laboratory.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmauder, S., Mishnaevsky, L. (2009). Micromechanical Simulation of Composites. In: Micromechanics and Nanosimulation of Metals and Composites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78678-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78678-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78677-1

  • Online ISBN: 978-3-540-78678-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics