Skip to main content

Ischaemic and Inflammatory Biomarkers in Cardiovascular Disease

  • Chapter
Integrating Cardiology for Nuclear Medicine Physicians

Abstract

Despite major advances in diagnosis and management, coronary artery disease continues to be a major public health problem. Patients with chest pain represent a heterogeneous group with varying presentation or severity of coronary artery disease and cardiac risk. Early prognostic evaluation of future cardiovascular risk is necessary for the application of appropriate treatment and optimal management in patients with chest pain. The role of cardiac markers in the diagnosis and management of patients with chest pain or in patients with suspected acute coronary syndromes (ACS) have improved dramatically with major technological advances. Currently various serum markers such as creatine kinase (CK)-MB, lactate dehydrogenase (LDH), myoglobin and cardiac troponins T (cTnT) and I (cTnI) are readily available and used as plasma diagnostic markers of myocardial necrosis in acute myocardial infarction (AMI) [1–18] (Table 7.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander RW, Pratt CM, Ryan TJ, Roberts R (2001) Diagnosis and management of patients with acute myocardial infarction In Fuster F, Alexander RW, O’Rourke RA (eds), Hurst’s: The Heart, 10th edn. McGraw-Hill, New York, pp. 1275–1360.

    Google Scholar 

  2. World Health Organisation (1981) WHO criteria for the diagnosis of acute myocardial infarction. Proposal for the multinational monitoring of trends and determinants of cardiovascular disease. Geneva: Cardiovascular diseases Unit, WHO.

    Google Scholar 

  3. Chan PD, Winkle PJ (1997) Current Clinical Strategies: History and Physical Examination in Medicine, 2nd edn. CCS Publishing. Laguna Hills, CA, pp. 7–11.

    Google Scholar 

  4. de Winter RJ, Koster RW, Sturk A, Sanders GT (1995) Value of myoglobin, troponin T, and CK-MB mass in ruling out an acute myocardial infarction in the emergency room. Circulation 92:3401–407.

    PubMed  Google Scholar 

  5. Wu AH (1997) Use of cardiac markers as assessed by outcomes analysis. Clin Biochem.30:339–350.

    Article  PubMed  CAS  Google Scholar 

  6. Wong SS (1996) Strategic utilization of cardiac markers for the diagnosis of acute myocardial infarction. Ann Clin Lab Sci.26:300–312.

    Google Scholar 

  7. Fischbach F (2000) A Manual of Laboratory and Diagnostic Tests, 6th edn. Lippincott Williams & Wilkins, Philadelphia, PA.

    Google Scholar 

  8. Morris S, Wu AH, Heller GV (1996) The role of cardiac imaging and biochemical markers in patients with acute chest pain. Curr Opin Cardiol.11:386–393.

    Article  PubMed  CAS  Google Scholar 

  9. Schreiber DH (2002) Update on cardiac markers in the emergency department. eMedicine Journal [serial online]; 3(2). www.emedicine.com.

    Google Scholar 

  10. Christenson RH, Duh SH, Sanhai WR et al. (2001) Characteristics of an albumin cobalt binding test for assessment of acute coronary syndrome patients: a multicenter study. Clin Chem 47:464–470.

    PubMed  CAS  Google Scholar 

  11. Sinha MK, Roy D, Gaze DC, Collinson PO, Kaski JC (2004) Role of ischemia modified albumin, a new biochemical marker of myocardial ischaemia, in the early diagnosis of acute coronary syndromes. Emerg Med J 21:29–34.

    Article  PubMed  CAS  Google Scholar 

  12. Melanson SF, Tanasijevic MJ (2005) Innovative Cardiovascular technologies laboratory diagnosis of acute myocardial injury Cardiovasc Pathol 14 156–161.

    Article  PubMed  CAS  Google Scholar 

  13. Scirica BM, Morrow DA (2004) Troponins in acute coronary syndromes. Prog Cardiovasc Disease 47:177–188.

    Article  CAS  Google Scholar 

  14. Marshall WJ, Banget SK (2004) Lipids, lipoproteins, cardiovascular disease. In Clinical Chemistry, 5th edn. Elseiver, pp. 255–271.

    Google Scholar 

  15. Walmsley RN, White GH (1994) Plasma Enzymes, 3rd edn. Blackwell Science, pp. 291–320.

    Google Scholar 

  16. Laker MF (1996) Enzymes in body fluids. In Clinical Biochemistry for Medical Students. WB Saunders.

    Google Scholar 

  17. Kaplan A, Opheim KE Enzymes. In Clinical Chemistry – Interpretation and Techniques. Lippincott Williams & Wilkins, Philadelphia, PA, pp. 277–311.

    Google Scholar 

  18. Amsterda EA Deedwania P (2005) Bedside evaluation of cardiac markers, Point-of-care testing can differentiate acute coronary syndromes. Postgrad Med 118:3.

    Google Scholar 

  19. Collinson PO (1998) Troponin T or troponin I or CK-MB (or none?). Eur Heart J 19:N16–N24.

    Article  PubMed  Google Scholar 

  20. Fischbach F (2000) A Manual of Laboratory and Diagnostic Tests, 6th edn. Lippincott Williams & Wilkins, Philadelphia, PA.

    Google Scholar 

  21. American Heart Association. 2001 Heart and Stroke Statistical Update. Dallas, Tex: American Heart Association; 2000. Available at: http://www.americanheart.org/statistics/index.html.

    Google Scholar 

  22. Wong SS (1996) Strategic utilization of cardiac markers for the diagnosis of acute myocardial infarction. Ann Clin Lab Sci 26:301–312.

    PubMed  CAS  Google Scholar 

  23. Balk EM, Ioannidis JPA, Salem D, Chew PW, Lau J (2001) Accuracy of biomarkers to diagnose acute cardiac ischemia in the emergency department: a meta-analysis. Ann Emerg Med.37:478–494.

    Article  PubMed  CAS  Google Scholar 

  24. Puleo PR, Meyer D, Wathen C et al. (1994) Use of a rapid assay of subforms of creatine kinase-MB to diagnose or rule out acute myocardial infarction. N Engl J Med 1:561–566.

    Article  Google Scholar 

  25. Puleo PR, Guadagno PA, Roberts R, Perryman MB (1989) Sensitive, rapid assay of subforms of creatine kinase MB in plasma. Clin Chem 35:1452–1455.

    PubMed  CAS  Google Scholar 

  26. Apple FS, Rogers MA, Sherman WM, Costill DL, Hagerman FC, Ivy JL (1984) Profile of creatine kinase isoenzymes in skeletal muscles of marathon runners. Clin Chem 30:413–416.

    PubMed  CAS  Google Scholar 

  27. Siegel AJ, Silverman LM, Evans WJ (1983). Elevated skeletal muscle creatine kinase MB isoenzyme levels in marathon runners. JAMA 25 250:2835–2837.

    Article  Google Scholar 

  28. Keshgegian AA, Feinberg NV (1984) Serum creatine kinase MB isoenzyme in chronic muscle disease. Clin Chem 30:575–578.

    PubMed  CAS  Google Scholar 

  29. Shahangian S, Ash KO, Wahlstrom NO Jr, Warden GD, Saffle JR, Taylor A Jr, Green LS (1984) Creatine kinase and lactate dehydrogenase isoenzymes in serum of patients suffering burns, blunt trauma, or myocardial infarction. Clin Chem 30:1332–1338.

    PubMed  CAS  Google Scholar 

  30. McBride JW, Labrosse KR, McCoy HG, Ahrenholz DH, Solem LD, Goldenberg IF (1986) Is serum creatine kinase-MB in electrically injured patients predictive of myocardial injury?
JAMA 14:764–768.

    Article  Google Scholar 

  31. Tzvetanova E (1971) Aldolase isoenzymes in serum and muscle from patients with progressive muscular dystrophy and from human foetus. J Neurol Sci 14:483–489.

    Article  PubMed  CAS  Google Scholar 

  32. Apple FS, Ricchiuti V, Voss EM, Anderson PA, Ney A, Odland M (1998) Expression of cardiac troponin T isoforms in skeletal muscle of renal disease patients will not cause false-positive serum results by the second generation cardiac troponin T assay. Eur Heart J 19:N30–N33.

    PubMed  CAS  Google Scholar 

  33. Panteghini M (2006) The new definition of myocardial infarction and the impact of troponin determination on clinical practice International. J Cardiol 106:298–306.

    Google Scholar 

  34. Sarko J, Pollack C V Jr (2002) Clinical laboratory in emergency medicine, cardiac troponins. J Emergency Med 23:57–65.

    Article  Google Scholar 

  35. Sharma S, Jackson PG , Makan J (2004) Cardiac troponins. J Clin Pathol 57:1025–1026.

    Article  PubMed  CAS  Google Scholar 

  36. Bertrand ME, Simoons ML, Fox KA et al. (2002) Management of acute coronary syndromes in patients presenting without persistent ST-segment elevation, Task Force Report, The Task Force on the Management of Acute Coronary Syndromes of the European Society of Cardiology. Eur Heart J 23:1809–1840.

    Article  PubMed  Google Scholar 

  37. Gupta M, Lent RW, Kaplan EL, Zabriskie JB (2002) Serum cardiac troponin I in acute rheumatic fever. Am J Cardiol 89:779–782.

    Article  PubMed  CAS  Google Scholar 

  38. Dispenzieri A, Kyle RA, Gertz MA et al. (2003) Survival in patients with primary systemic amyloidosis and raised serum cardiac troponins. Lancet 361:1787–1789.

    Article  PubMed  CAS  Google Scholar 

  39. Sybrandy KC, Cramer MJM, Burgersdijk C (2003) Diagnosing cardiac contusion: old wisdom and new insights. Heart 89:458–489.

    Article  Google Scholar 

  40. Dworschak M, Franz M, Khazen C, Czerny M, Haisjackl M, Hiesmayr M. (2001) Mechanical trauma as the major cause of troponin T release after transvenous implantation of cardioverter/defibrillators. Cardiology 95:212–214.

    Article  PubMed  CAS  Google Scholar 

  41. Cardinale D, Sandri MT, Martinoni A et al. (2000) Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol 36:517–522.

    Article  PubMed  CAS  Google Scholar 

  42. Sato Y, Yamada T, Taniguchi R et al. (2001) Persistently increased serum concentrations of cardiac troponin T in patients with idiopathic dilated cardiomyopathy are predictive of adverse outcomes. Circulation 103:369–374.

    PubMed  CAS  Google Scholar 

  43. Wright RS, Williams BA, Cramner H et al. (2002) Elevations of cardiac troponin I are associated with increased short-term mortality in noncardiac critically ill emergency department patients. Am J Cardiol 90:634–636.

    Article  PubMed  CAS  Google Scholar 

  44. Apple FS, Murakami MM, Pearce LA, Herzog CA (2002) Predictive value of cardiac troponin I and T for subsequent death in end-stage renal disease. Circulation 106:2941–2945.

    Article  PubMed  CAS  Google Scholar 

  45. Gaze DC, Lawson GJ, Harris A, Collinson PO (2003) Evidence of myocyte necrosis in glycogen storage disease type II. Clin Chem 49:A39

    Google Scholar 

  46. Chance JJ, Segal JB, Wallerson G et al. (2001) Cardiac troponin T and Creactive protein as markers of acute cardiac allograft rejection. Clin Chim Acta 312:31–39.

    Article  PubMed  CAS  Google Scholar 

  47. Missov E, Mentzer W, Laprade M et al.( 2001) Cardiac markers of injury in hemoglobinopathy patients with transfusion hemosiderosis. J Am Coll Cardiol 37:470.

    Google Scholar 

  48. Hamwi SM, Sharma AK, Weissman NJ et al.( 2003) Troponin-I elevation in patients with increased left ventricular mass. Am J Cardiol 92:88–90.

    Article  PubMed  CAS  Google Scholar 

  49. Arlati S, Brenna S, Prencipe L et al. (2000) Myocardial necrosis in ICU patients with acute non-cardiac disease: a prospective study. Intensive Care Med 26:31–37.

    Article  PubMed  CAS  Google Scholar 

  50. Mutch WJ, Kulkarmi UV, Croal BL, Simpson WG (2001) Cardiac marker levels in hypothyroidism. Clin Chem 47:A199.

    Google Scholar 

  51. Lauer B, Niederau C, Kuhl U et al. (1997) Cardiac troponin T in patients with clinically suspected myocarditis. J Am Coll Cardiol 30:1354–1359.

    Article  PubMed  CAS  Google Scholar 

  52. Lopez-Jimenez F, Goldman L, Sacks DB et al. (1997) Prognostic value of cardiac troponin T after noncardiac surgery: 6-month follow-up data. J Am Coll Cardiol 29:1241–1245.

    Article  PubMed  CAS  Google Scholar 

  53. Giannitsis E, Muller-Bardorff M, Kurowski V et al. (2000) Independent prognostic value of cardiac troponin T in patients with confirmed pulmonary embolism. Circulation 102:211–217.

    PubMed  CAS  Google Scholar 

  54. Spies C, Haude V, Fitzner R et al. (1998) Serum cardiac troponin T as a prognostic marker in early sepsis. Chest 113:1055–1063.

    Article  PubMed  CAS  Google Scholar 

  55. Plebani M, Zaninotto M (1998) Diagnostic strategies in myocardial infarction using myoglobin measurement. Eur Heart J 19:N12–N15.

    PubMed  Google Scholar 

  56. Rao M, Jaber, B L, Balakrishnan VS (2006) Inflammatory biomarkers and cardiovascular risk: association or cause and effect? Seminars in Dialysis 19:129–135.

    Article  PubMed  Google Scholar 

  57. Heger JW, Niemann JT, Roth RF, Criley JM (1998) Cardiology, 4th edn. Williams & Wilkins, Baltimore, MD.

    Google Scholar 

  58. Wong SS (1996) Strategic utilization of cardiac markers for the diagnosis of acute myocardial infarction. Ann Clin Lab Sci 26:301–312.

    PubMed  CAS  Google Scholar 

  59. Conn HF et al. (eds) (2000) Conn’s Current Therapy. WB Saunders, Philadelphia, PA, pp. 291–319.

    Google Scholar 

  60. Kitsis RN, Jialal I (2006) Limiting myocardial damage during acute myocardial infarction by inhibiting C-reactive protein.New Engl J Med 3(355):513–515.

    Article  Google Scholar 

  61. Suleiman M, Khatib R, Agmon Y et al. (2006) Early inflammation and risk of long-term development of heart failure and mortality in survivors of acute myocardial infarction – predictive role of C-reactive protein. J Am Coll Cardiol 47:962–968.

    Article  PubMed  Google Scholar 

  62. Kushner I, Broder ML, Karp D (1978) Control of the acute phase response. Serum C-reactive protein kinetics after acute myocardial infarction. J Clin Invest 61:235–242.

    Article  PubMed  CAS  Google Scholar 

  63. de Beer FC, Hind CRK, Fox KM, Allan R, Maseri A, Pepys MB (1982). Measurement of serum C-reactive protein concentration in myocardial ischaemia and infarction. Br Heart J 47:239–243.

    Article  PubMed  Google Scholar 

  64. Griselli M, Herbert J, Hutchinson WL, Taylor KM, Sohail M, Krausz T, Pepys MB (1999) C-reactive protein and complement are important mediators of tissue damage in acute myocardial infarction.J Exp Med 20(190):1733–1740.

    Article  Google Scholar 

  65. Seino Y, Ogata K, Takano T, Ishii J, Hishida H, Morita H, Takeshita H, Takagi Y, Sugiyama H, Tanaka T, Kitaura Y (2003) Use of a whole blood rapid panel test for heart-type fatty acid-binding protein in patients with acute chest pain: comparison with rapid troponin T and myoglobin tests. Am J Med 115:185–190.

    Article  PubMed  CAS  Google Scholar 

  66. Chan CP, Sanderson JE, Glatz JF, Cheng WS, Hempel A, Renneberg R (2004) A superior early myocardial infarction marker Human heart-type fatty acid-binding protein. Z Kardiol 93:388–397.

    Article  PubMed  CAS  Google Scholar 

  67. Garlichs CD, Eskafi S, Raaz D, Schmidt A, Ludwig J, Herrmann M, Klinghammer L, Daniel WG, Schmeisser A (2001) Patients with acute coronary syndromes express enhanced CD40 ligand/CD154 on platelets. Heart 86:649–655.

    Article  PubMed  CAS  Google Scholar 

  68. Heeschen C, Dimmeler S, Hamm CW, van den Brand MJ, Boersma E, Zeiher AM, Simoons ML (2003) Soluble CD40 ligand in acute coronary syndromes. New Engl J Med 348:1104–1111.

    Article  PubMed  CAS  Google Scholar 

  69. Brennan ML, Penn MS, Van Lente F (2003) Prognostic value of myeloperoxidase in patients with chest pain. New Engl J Med 349:1595–1604.

    Article  PubMed  CAS  Google Scholar 

  70. Baldus S, Heeschen C, Meinertz T, Zeiher AM, Eiserich JP, Munzel T, Simoons ML, Hamm CW (2003) Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation 108:1440–1445.

    Article  PubMed  CAS  Google Scholar 

  71. Klocke FJ, Baird MG, Lorell BH (2003) ACC/AHA/ASNC Guidelines for the clinical use of cardiac radionuclide imaging – executive summary. Circulation 108:1404.

    Article  PubMed  Google Scholar 

  72. Johnson BD, Kip KE, Marroquin OC, Ridker PM (2004) Serum amyloid A as a predictor of coronary artery disease and cardiovascular outcome in women: the National Heart, Lung, and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation (WISE). Circulation 109:726–732.

    Article  PubMed  CAS  Google Scholar 

  73. Bayes-Genis A, Conover CA, Overgaard MT (2001) Pregnancyassociated plasma protein A as a marker of acute coronary syndromes. New Engl J Med 345:1022–1029.

    Article  PubMed  CAS  Google Scholar 

  74. Lindahl B, Toss H, Siegbahn A, Venge P, Wallentin L (2000) Markers of myocardial damage and inflammation in relation to long-term mortality in unstable coronary artery disease. FRISC Study Group. Fragmin during Instability in Coronary Artery Disease. New Engl J Med 343:1139–1147.

    Article  PubMed  CAS  Google Scholar 

  75. Toss H, Lindahl B, Siegbahn A, Wallentin L (1997) Prognostic influence of increased fibrinogen and C-reactive protein levels in unstable coronary artery disease. FRISC Study Group. Fragmin during Instability in Coronary Artery Disease. Circulation 96:4204–4210.

    PubMed  CAS  Google Scholar 

  76. Becker RCC, Bovill E et al. (1996) Prognostic value of plasma fibrinogen concentration in patients with unstable angina and non-Q-wave myocardial infarction (TIMI IIIB trial).Am J Cardiol 78:142–147.

    Article  CAS  Google Scholar 

  77. Pollak H, Fischer M, Fritsch S, Enenkel W (1991) Are admission plasma fibrinogen levels useful in the characterization of risk groups after myocardial infarction treated with fibrinolysis? Thromb Haemost 66:406–409.

    PubMed  CAS  Google Scholar 

  78. Ardissino D, Merlini PA, Gamba G et al. (1996) Thrombin activity and early outcome in unstable angina pectoris. Circulation 93:1634–1639.

    PubMed  CAS  Google Scholar 

  79. Ernofsson M, Strekerud F, Toss H, Abildgaard U, Wallentin L, Siegbahn A (1998) Low-molecular weight heparin reduces the generation and activity of thrombin in unstable coronary artery disease. Thromb Haemost 79:491–494.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gnanasegaran, G., Shabo, G., Buscombe, J. (2009). Ischaemic and Inflammatory Biomarkers in Cardiovascular Disease. In: Movahed, A., Gnanasegaran, G., Buscombe, J., Hall, M. (eds) Integrating Cardiology for Nuclear Medicine Physicians. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78674-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78674-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78673-3

  • Online ISBN: 978-3-540-78674-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics