Skip to main content

Cardiovascular Medications: Pharmacokinetics and Pharmacodynamics

  • Chapter
Integrating Cardiology for Nuclear Medicine Physicians

Abstract

Cardiovascular diseases (CVD) have reached epidemic proportions in developed countries, and are the leading cause of morbidity and mortality. An estimated 16.7 million – or 29.2% of total global deaths – result from the various forms of CVD, many of which are preventable by healthy diet, regular physical activity, and smoking cessation [1]. CVD is no longer the disease of the developed world: some 80% of all CVD deaths worldwide took place in developing, low and middle-income countries and these countries also account for 86% of the global CVD disease burden. By 2010, CVD will be the leading cause of death in developing countries. The rise in CVD reflects a significant change in diet habits, physical activity levels, and tobacco consumption worldwide as a result of industrialization, urbanization, economic development and food market globalization. To deal with this changing situation, an extraordinary array of new cardiovascular therapies continues to become available. These drugs and therapies are efficacious and are better tolerated than their predecessors, not only in the management but also in prevention of CVD. This results in ever more difficulty for the practitioners of medicine in understanding the mechanism of action of these medications and also in deciding the proper medication for their patients. This chapter is a concise presentation of the pharmacology of cardiovascular medications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://www.who.int/dietphysicalactivity/publications/facts/cvd/en. Accessed January 2004.

    Google Scholar 

  2. Paradis P, Dali-Youcef N, Paradis FW, Thibault G, Nemer M (2000). Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc Natl Acad Sci 972: 931–936.

    Google Scholar 

  3. McMurray JJ (1999) Major beta blocker mortality trials in chronic heart failure: A critical review. Heart 82:14–22.

    Google Scholar 

  4. Salvetti A (1990) Newer ACE inhibitors. A look at the future. Drugs 40:800–828.

    PubMed  CAS  Google Scholar 

  5. Heel RC, Brogden RN, Speight TM, Avery GS (1980) Captopril: A preliminary review of its pharmacological properties and therapeutic efficacy. Drugs 20:409–452.

    PubMed  CAS  Google Scholar 

  6. Aronoff GR, Bernes JS, Brier ME (1999) Drug Prescribing in Renal Failure: Dosing Guidelines for Adults. American College of Physicians, Philadelphia, pp. 1–176.

    Google Scholar 

  7. Duchin KL, Waclawski AP, Tu JI et al. (1991) Pharmacokinetics, safety, and pharmacologic effects of fosinopril sodium, an angiotensin-converting enzyme inhibitor in healthy subjects. J Clin Pharmacol 31:58–64.

    PubMed  CAS  Google Scholar 

  8. Grassi G, Turri C, Dell’Oro R et al. (1998) Effect of chronic angiotensin converting enzyme inhibition on sympathetic nerve traffic and baroreflex control of the circulation in essential hypertension. J Hypertens 16:1789.

    PubMed  CAS  Google Scholar 

  9. Lin C, Frishman WH (1996) Renin inhibition: A novel therapy for cardiovascular disease. Am Heart J 131:1024–1034.

    PubMed  CAS  Google Scholar 

  10. Ferri C, Laurenti O, Bellini C, Faldetta MR, Properzi G, Santucci A, De Mattia G (1995) Circulating endothelin-1 levels in lean noninsulin-dependent diabetic patients. Influence of ACE-inhibition. Am J Hypertens 8:40–47.

    PubMed  CAS  Google Scholar 

  11. Weir RM, Hanes DS, Klassen DK (2004) Antihypertensive drugs, in Brenner & Rector’s The Kidney, 7th edn. Elsevier, pp. 2387–2452.

    Google Scholar 

  12. Wood R (1995) Bronchospasm and cough as adverse reactions to the ACE inhibitors captopril, enalapril, lisinopril. Br J Clin Pharmacol 39:265–270.

    PubMed  CAS  Google Scholar 

  13. van de Ven PJ, Beutler JJ, Kaatee R, Beek FJ, Mali WP, Koomans HA (1998) Angiotensin converting enzyme inhibitor–induced renal dysfunction in atherosclerotic renovascular disease. Kidney Int 53:986–993.

    PubMed  Google Scholar 

  14. Cunniff C, Jones KL, Phillipson J, Benirschke K, Short S, Wujek J (1990) Oligohydramnios sequence and renal tubular malformation associated with maternal enalapril use. Am J Obstet Gynecol 162:187–189.

    PubMed  CAS  Google Scholar 

  15. The Task Force on ACE-inhibitors of the European Society of Cardiology (2004) Expert consensus document on angiotensin converting enzyme inhibitors in cardiovascular disease. Eur Heart J 25:1454–1470.

    Google Scholar 

  16. Chu TJ, Chow N (1993) Adverse effects of ACE inhibitors. Ann Internal Med 118:314.

    Google Scholar 

  17. Timmermans PBMWM, Wong PC, Chiu AT et al. (1993) Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45:205–251.

    PubMed  CAS  Google Scholar 

  18. Conlin PR, Spence JD, Williams B et al. (2000) Angiotensin II antagonists for hypertension: Are there differences in efficacy? Am J Hypertens 13:418–426.

    PubMed  CAS  Google Scholar 

  19. Wexler RR, Greenlee WJ, Irvin JD et al. (1996) Nonpeptide angiotensin II receptor antagonists: the next generation in antihypertensive therapy. J Med Chem 39:625–656.

    PubMed  CAS  Google Scholar 

  20. Sica DA, Gehr TWB, Frishman WH (2003) The renin-angiotensin axis: Angiotensin converting enzyme inhibitors and Angiotensin receptor blockers. In Frishman WH, Sonnenblick EH, Sica DA (eds). Cardiovascular Pharmacotherapeutics, 2nd edn. McGraw-Hill, pp. 131–156.

    Google Scholar 

  21. Timmermans PBMWM, Chiu AT, Herblin WF, Wong PC, Smith RD (1992) Angiotensin II receptor subtypes. Am J Hypertens 5:406–410.

    PubMed  CAS  Google Scholar 

  22. Griendling KK, Alexander RW (1993) The angiotensin (AT sub 1) receptor. Semin Nephrol 13:558–566

    PubMed  CAS  Google Scholar 

  23. Packer M, Bristow MR, Cohn JN et al. (1996)The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N Engl J Med 334:1349–1355

    PubMed  CAS  Google Scholar 

  24. MERIT-HF (1999) Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomized Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 353:2001–2007.

    Google Scholar 

  25. Meyer J, Lawson N (1999) Adrenergic inhibitors. In: Cardiovascular Drugs in Perioperative Period. Philadelphia, Lippincott-Raven, pp. 84–109.

    Google Scholar 

  26. Hoffman BB (2001) Catecholamines, sympathomimetic drugs, and adrenergic receptor antagonists. In Hardman JG, Limbird LE (eds) Goodman and Gillman’s the Pharmacological Basis of Therapeutics, 10th edn. McGraw Hill Publishers, pp. 215–268.

    Google Scholar 

  27. Arthur MJ, Tanner AR, Patel C et al. (1985) Pharmacology of propranolol in patients with cirrhosis and portal hypertension. Gut 26:14–19.

    PubMed  CAS  Google Scholar 

  28. Vanhees L, Aubert A, Fagard R et al. (1986) Influence of beta 1-versus beta 2-adrenoceptor blockade on left ventricular function in humans. J Cardiovasc Pharmacol 8:1086–1091.

    PubMed  CAS  Google Scholar 

  29. Frischman WH (2003) Alpha and beta adrenergic blocking drugs. In: Frischman WH, Sonnenblick EH, Sica DA (eds) Cardiovascular Pharmacotherapeutics, 2nd edn. McGraw Hill Publishers, pp. 67–98.

    Google Scholar 

  30. Beta-Blocker Heart Attack Trial Research Group (1982) A randomized trial of propranolol in patients with acute myocardial infarction, I: mortality results. J Am Med Assoc 247:1707–1714.

    Google Scholar 

  31. Ames RP (1986) The effects of antihypertensive drugs on serum lipids and lipoproteins. II. Non-diuretic drugs. Drugs 32:335–357.

    PubMed  CAS  Google Scholar 

  32. Lager I, Blohme G, Smith U (1979) Effect of cardioselective and non-selective beta-blockade on the hypoglycemic response in insulin-dependent diabetics. Lancet 1:458–462.

    PubMed  CAS  Google Scholar 

  33. Yedinak KC (1993) Formulary considerations in selection of beta-blockers. Pharmacoeconomics 4:104–121

    PubMed  CAS  Google Scholar 

  34. Lopez-Sendon J, Swedberg K, McMurray J, Tamargo J, Maggioni AP, Dargie H, Tendera M, Waagstein F, Kjekshus J, Lechat P, Torp-Pedersen C (2004) Task Force On Beta-Blockers of the European Society of Cardiology. Expert consensus document on beta-adrenergic receptor blockers. Euro Heart J 25:1341–1362.

    Google Scholar 

  35. Freher M, Challapalli S, Pinto JV, Schwartz J, Bonow RO, Gheorgiade M (1999) Current status of calcium channel blockers in patients with cardiovascular disease. Curr Probl Cardiol 24:236–240.

    PubMed  CAS  Google Scholar 

  36. McDonald TF, Pelzer S, Trautwein W, Pelzer DJ (1994) Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev 74:365–507.

    PubMed  CAS  Google Scholar 

  37. Hockermon GH, Peterson BZ, Johnson BD, Catterall WA (1997) Molecular determinants of drug binding and action on L-type calcium channels. Annu Rev Pharmacol Toxicol 37:361–396.

    Google Scholar 

  38. Zhang Y, Benet LZ (2001) The gut as a barrier to drug absorption: Combined role of cytochrome P450 3A and P-glycoprotein. Clin Pharmacokinet 40:159–168.

    PubMed  CAS  Google Scholar 

  39. Kroemer HK, Gautier J-C, Beaune P, Henderson C, Wolf CR, Eichelbaum M (1993) Identification of P450 enzymes involved in metabolism of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol 348:332–337.

    PubMed  CAS  Google Scholar 

  40. Kroemer HR, Echizen H, Heidemann H, Eichelbaum M (1992) Predictability of the in vivo metabolism of verapamil from in vitro data: contribution of individual metabolic pathways and stereoselective aspects. J Pharmacol Exp Ther 260:1052–1057.

    PubMed  CAS  Google Scholar 

  41. Kerins DM, Robertson, RM, Robertson, D (2001) Drugs used for the treatment of myocardial ischemia. In Hardman JG, Limbird LE (eds). Goodman and Gillman’s the Pharmacological Basis of Therapeutics, 10th edn. McGraw Hill Publishers, pp. 843–870.

    Google Scholar 

  42. Kelly JG, O’Malley K (1992) Clinical pharmacokinetics of calcium antagonists. Clin Pharmacokinet 22:416–433.

    PubMed  CAS  Google Scholar 

  43. Schwartz A (1992) Molecular and cellular aspects of calcium channel antagonism. Am J Cardiol 70:6F–8F.

    PubMed  CAS  Google Scholar 

  44. Morel N, Buryi V, Feron O, Gomez J-P, Christen M-O, Godfraind T (1998) The action of calcium channel blockers on recombinant L-type calcium channel alpha1-subunits. Br J Pharmacol 125:1005–1012.

    PubMed  CAS  Google Scholar 

  45. Henry PD, Perez JE (1984) Clinical pharmacology of calcium antagonists. Cardiovasc Clin 14:93–109.

    PubMed  CAS  Google Scholar 

  46. Bremner AD, Fell PJ, Hosie J, James IG, Saul PA, Taylor SH (1993) Early side-effects of antihypertensive therapy: comparison of amlodipine and nifedipine retard. J Hum Hypertens 7:79–81.

    PubMed  CAS  Google Scholar 

  47. Singh BN (1992) Safety profile of bepridil determined from clinical trials in chronic stable angina in the United States. Am J Cardiol 69:68–74.

    Google Scholar 

  48. Odlind B, Beermann B (1980) Renal tubular secretion and effects of furosemide. Clin Pharmacol Ther 27:784–790.

    PubMed  CAS  Google Scholar 

  49. Pichette V, du Souich P (1996) Role of the kidneys in the metabolism of furosemide: its inhibition by probenecid. J Am Soc Nephrol 7:345–349.

    PubMed  CAS  Google Scholar 

  50. Schwartz S, Brater DC, Pound D, Greene PK, Kramer WG, Rudy D (1993) Bioavailability, pharmacokinetics, and pharmacodynamics of torsemide in patients with cirrhosis. Clin Pharmacol Ther 54:90–97.

    PubMed  CAS  Google Scholar 

  51. Sahn H, Reuter K, Mutschler E, Gerok W, Knauf H (1987) Pharmacokinetics of amiloride in renal and hepatic disease. Eur J Clin Pharmacol 33:493–498.

    Google Scholar 

  52. Knauf H, Möhrke W, Mutschler E (1983) Delayed elimination of triamterene and its active metabolite in chronic renal failure. Eur J Clin Pharmacol 24:453–456.

    PubMed  CAS  Google Scholar 

  53. Overdiek HWPM, Hermens WAJJ, Merkus FWHM (1985) New insights into the pharmacokinetics of spironolactone. Clin Pharmacol Ther 38:469–474.

    PubMed  CAS  Google Scholar 

  54. Jackson EK (2001) Diuretics. In: Hardman JG, Limbird LE (eds) Goodman and Gillman’s the Pharmacological Basis of Therapeutics. 10th edn. McGraw Hill Publishers, pp. 757–788.

    Google Scholar 

  55. Brater DC (1998) Drug therapy: diuretic therapy N Engl J Med 339:387–395.

    PubMed  CAS  Google Scholar 

  56. Brater DC, Chennavasin P, Day B, Burdette A, Anderson S (1983) Bumetanide and furosemide. Clin Pharmacol Ther 34:207–213.

    PubMed  CAS  Google Scholar 

  57. Cogan MG, Maddox DA, Warnock DG, Lin ET, Rector FC (1979) Effect of acetazolamide on bicarbonate reabsorption in the proximal tubule of the rat. Am J Physiol 237:447–454.

    Google Scholar 

  58. Costanzo LS, Windhager EE (1978) Calcium and sodium transport by the distal convoluted tubule of the rat. Am J Physiol 235:492–506.

    Google Scholar 

  59. Marver D, Stewart J, Funder JW, Feldman D, Edelman IS (1974) Renal aldosterone receptors: studies with (3H)aldosterone and the anti-mineralocorticoid (3H)spirolactone (SC-26304). Proc Natl Acad Sci USA 71:1431–1435.

    PubMed  CAS  Google Scholar 

  60. Weber KT (2001) Aldosterone in congestive heart failure. N Engl J Med 345:1689–1697.

    PubMed  CAS  Google Scholar 

  61. Cooperman LB, Rubin IL (1973) Toxicity of ethacrynic acid and furosemide. Am Heart J 85:831–834.

    PubMed  CAS  Google Scholar 

  62. Rose LI, Underwood RH, Newmark SR, Kisch ES, Williams GH (1977) Pathophysiology of spironolactone-induced gynecomastia. Ann Intern Med 87:398–403.

    PubMed  CAS  Google Scholar 

  63. Raza JA. Movahed A (2002) Use of cardiovascular medications in the elderly. Int J Cardiol 85:203–215.

    Google Scholar 

  64. Massie BM, Shah NB (1997) Evolving trends in the epidemiologic factors of heart failure: rationale for preventive strategies and comprehensive disease management. Am Heart J 133:703–712.

    PubMed  CAS  Google Scholar 

  65. Remme WJ, Swedberg K (2001) Guidelines for the diagnosis and treatment of chronic heart failure. Eur Heart J 22:1527–1560.

    PubMed  CAS  Google Scholar 

  66. Murray CJL, Lopez AD (1997) Alternative projections of mortality and disability by cause 1990–2020: global burden of disease study. Lancet 349:1498–1504.

    PubMed  CAS  Google Scholar 

  67. Withering W (1983) An account of the foxglove and some of its medical uses, with practical remarks on dropsy and other diseases. In: Willius FA, Keys TE (eds). Classics of Cardiology: a Collection of Classic Works on the Heart and Circulation with Comprehensive Biographic Accounts of the Authors. Malabar, FL, Krieger.

    Google Scholar 

  68. Ooi H, Colucci W (2001) Pharmacological treatment of heart failure. In: Hardman JG, Limbird LE (eds). Goodman and Gillman’s the Pharmacological Basis of Therapeutics, 10th edn. McGraw Hill Publishers.

    Google Scholar 

  69. Smith TW (1988) Digitalis: mechanisms of action and clinical use. N Engl J Med 318:358–365.

    PubMed  CAS  Google Scholar 

  70. Eisner DA, Smith TW (1991) The Na-K pump and its effectors in cardiac muscle. In Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE (eds). The Heart and Cardiovascular System, 2nd edn. New York, Raven Press, pp. 863–902.

    Google Scholar 

  71. Gheorghiade M (1996) Neurohumoral effects of digoxin: a target for further investigation. Cardiologia 41:967–972.

    PubMed  CAS  Google Scholar 

  72. Newton GE, Tong JH, Schofield AM, Baines AD, Floras JS, Parker JD (1996) Digoxin reduces cardiac sympathetic activity in severe congestive heart failure. J Am Coll Cardiol 28:155–161.

    PubMed  CAS  Google Scholar 

  73. Howard D, Smith CI, Stewart G (1973) A prospective survey of the incidence of cardiac intoxication with digitalis in patients being admitted to hospital and correlation with serum digoxin levels. Aust NZ J Med. 3:279–284.

    CAS  Google Scholar 

  74. Howanitz PJ, Steindel SJ (1993) Digoxin therapeutic drug monitoring practices. A College of American Pathologists Q-probes study of 666 institutions and 18,679 toxic levels. Arch Pathol Lab Med 117:684–690.

    PubMed  CAS  Google Scholar 

  75. Martin-Suarez A, Lanao JM, Calvo MV et al. (1993) Digoxin pharmacokinetics in patients with high serum digoxin concentrations. J Clin Pharm Ther 18:63–68.

    PubMed  CAS  Google Scholar 

  76. Steiner JF, Robbins LJ, Hammermeister KE, Roth SC, Hammond WS (1994) Incidence of digoxin toxicity in outpatients. West J Med 161:474–8.

    PubMed  CAS  Google Scholar 

  77. Murrell W (1879) Nitroglycerine as a remedy for angina pectoris. Lancet 1:80–81, 113

    Google Scholar 

  78. Fung HL, Chung SJ, Bauer JA, Chong S, Kowaluk EA (1992) Biochemical mechanism of organic nitrate action. Am J Cardiol 70:4–10.

    Google Scholar 

  79. Loscalzo J (1985) N-acetylcysteine potentiates inhibition of platelet aggregation by nitroglycerin. J Clin Invest 76:703–708.

    PubMed  CAS  Google Scholar 

  80. Kelly RA, Balligand JL, Smith TW (1996) Nitric oxide and cardiac function. Circ Res 79:363–380

    PubMed  CAS  Google Scholar 

  81. Bogaert MG (1988) Pharmacokinetics of organic nitrates in man: an overview. Eur Heart J 9:Suppl A:33–37.

    PubMed  CAS  Google Scholar 

  82. Grobecker H (1990) Pharmacology and clinical pharmacology of organic nitrates. Euro J Clin Pharmacol 38:1:S3–S7.

    CAS  Google Scholar 

  83. Abrams J, Frischman WH (2003) The organic nitrates and nitroprusside. In Frischman WH, Sonnenblick EH, Sica DA (eds). Cardiovascular Pharmacotherapeutics, 2nd edn. McGraw Hill Publishers, pp. 203–214.

    Google Scholar 

  84. Cheitlin MD, Hutter AM Jr, Brindis RG et al. (1999) ACC/AHA expert consensus document. Use of sildenafil (Viagra) in patients with cardiovascular disease. American College of Cardiology/American Heart Association. J Am Coll Cardiol 33:273–82.

    PubMed  CAS  Google Scholar 

  85. Colucci WS. Elkayam U. Horton DP et al. (2000) Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure. Nesiritide Study Group. New Engl J Med 343:246–253.

    Google Scholar 

  86. Scios Inc. Data on file (accessed December 2004)

    Google Scholar 

  87. Mills RM, Hobbs RE (2003) Nesiritide in perspective: evolving approaches to the management of acute decompensated heart failure. Drugs of Today 39:767–774.

    PubMed  CAS  Google Scholar 

  88. Levin ER, Gardner DG, Samson WK (1998) Natriuretic peptides. New Eng J Med 339:321–328.

    PubMed  CAS  Google Scholar 

  89. Koller KJ, Goeddel DV (1992) Molecular biology of the natriuretic peptides and their receptors. Circulation 86:1081–1088.

    PubMed  CAS  Google Scholar 

  90. Kambayashi Y, Nakao K, Kimura H et al. (1990) Biological characterization of human brain natriuretic peptide (BNP) and rat BNP: species-specific actions of BNP. Biochem Biophys Res Commun 173:599–605.

    PubMed  CAS  Google Scholar 

  91. Hobbs RE, Miller LW, Bott-Silverman C et al. (1996) Hemodynamic effects of a single intravenous injection of synthetic human brain natriuretic peptide in patients with heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 78:896–901

    PubMed  CAS  Google Scholar 

  92. Mills RM, LeJemtel TH, Horton DP et al. (1999) Sustained hemodynamic effects of an infusion of nesiritide (Human b-type natriuretic peptide) in heart failure. J Am Coll Cardiol 34:155–162.

    PubMed  CAS  Google Scholar 

  93. Young JB, Abraham WT, Stevenson LW et al. (2002) Intravenous nesiritide vs nitroglycerin for treatment of decompensated congestive heart failure: a randomized controlled trial. J Am Med Assoc 287: 1531–1540.

    CAS  Google Scholar 

  94. Long-term pharmacotherapy in the management of obesity: National Task Force on the Prevention and Treatment of Obesity (1996). J Am Med Assoc 276:1907–1915.

    Google Scholar 

  95. Ford ES, Giles WH, Dietz WH (2002) Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. J Am Med Assoc 287:356–359.

    Google Scholar 

  96. Grundy SM, Howard B, Smith S et al. (2002) AHA conference proceedings prevention conference VI: diabetes and cardiovascular disease executive summary. Circulation 105:2231–2239.

    PubMed  Google Scholar 

  97. Ginsberg HN, Huang LS (2000) The insulin resistance syndrome: impact on lipoprotein metabolism and atherothrombosis. J Cardiovasc Risk 7:325–331.

    PubMed  CAS  Google Scholar 

  98. Superko HR, Krauss RM (1994) Coronary artery disease regression. Convincing evidence for the benefit of aggressive lipoprotein management. Circulation 90:1056–1069.

    PubMed  CAS  Google Scholar 

  99. McKenney JM (2004) Optimizing LDL-C lowering with statins. Am J Therap 11:54–59.

    Google Scholar 

  100. Shepherd J, Packard CJ, Bicker S, Lawrie TDV, Morgan HG (1980) Cholestyramine promotes receptor-mediated low-density-lipoprotein catabolism. N Engl J Med 302:1219–1222.

    PubMed  CAS  Google Scholar 

  101. Schectman G, Hiatt J (1993) Evaluation of the effectiveness of lipid-lowering therapy (bile acid sequestrants, niacin, psyllium, and lovastatin) for treating hypercholesterolemia in veterans. Am J Cardiol 71:759–765.

    PubMed  CAS  Google Scholar 

  102. Knapp HH, Schrott H, Ma P, Knopp R, Chin B, Gaziano JM, Donovan JM, Burke SK, Davidson MH (2001) Efficacy and safety of combination simvastatin and colesevelam in patients with primary hypercholesterolemia. Am J Med 110:352–360.

    PubMed  CAS  Google Scholar 

  103. Talbert RL (1999) Hyperlipidemia. In: DiPiro JT, Talbert RL, Yee GC et al. (eds) Pharmacotherapy: A Pathophysiologic Approach, 4th edn. Stamford, CT, Appleton and Lange, pp. 350–361.

    Google Scholar 

  104. Lipid Research Clinics Program (1984) The Lipid Research Clinics Coronary Primary Prevention Trial results. I. Reduction in incidence of coronary heart disease. J Am Med Assoc 251:351–364.

    Google Scholar 

  105. Detmers PA, Patel S, Hernandez M et al. (2000) A target for cholesterol absorption inhibitors in the enterocyte brush border membrane. Biochim Biophys Acta 20: 243–252.

    Google Scholar 

  106. Knopp RH, Gitter H, Truitt T et al. (2001) Ezetimibe reduces low-density lipoprotein cholesterol: results of a phase III, randomised, double blind, placebo-controlled trial. Atherosclerosis 2: 38. Abstract.

    Google Scholar 

  107. Sudhop T, Von Bergmann K (2002) Cholesterol absorption inhibitors for the treatment of hypercholesterolemia. Drugs 62:2333–2347.

    PubMed  CAS  Google Scholar 

  108. Sudhop T, Lutjohann D, Kodal A et al. (2002) Inhibition of intestinal cholesterol absorption by ezetimibe in humans. Circulation 106:1943–1948.

    PubMed  CAS  Google Scholar 

  109. Law M (2001) Plant sterol and stanol margarines and health. Br Med J 320: 861–864

    Google Scholar 

  110. Davis HR, Pula KK, Alton KB et al. (2001) The synergistic hypocholesterolemic activity of the potent cholesterol absorption inhibitor, ezetimibe, in combination with 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors in dogs. Metabolism 50:1234–1241.

    PubMed  CAS  Google Scholar 

  111. Kosoglou T, Seiberling M, Statkevich P et al. (2001) Pharmacodynamic interaction between the new selective cholesterol absorption inhibitor ezetimibe and atorvastatin. J Am Coll Cardiol 37(suppl): 229A.

    Google Scholar 

  112. Kosoglou T, Meyer I, Cutler DL et al. (2000) Pharmacodynamic interaction between the selective cholesterol absorption inhibitor ezetimibe and lovastatin. In Program and Abstracts of the Third International Congress on Coronary Artery Disease: From Prevention to Intervention. Lyon, France, p. 101.

    Google Scholar 

  113. Miller DB, Spence JD (1998) Clinical pharmacokinetics of fibric acid derivatives (fibrates). Clin Pharmacokinet 34:155–162.

    PubMed  CAS  Google Scholar 

  114. Ide T, Oku H, Sugano M (1982) Reciprocal responses to clofibrate in ketogenesis and triglyceride and cholesterol secretion in isolated rat liver. Metabolism 31:1065–1072.

    PubMed  CAS  Google Scholar 

  115. Auwerx J, Schoonjans K, Fruchart JC, Staels B (1996) Regulation of triglyceride metabolism by PPARs: fibrates and thiazolidinediones have distinct effects. J Atheroscler Thromb 3:81–89.

    PubMed  CAS  Google Scholar 

  116. Fruchart JC, Brewer HB, Leitersdorf E (1998) Consensus for the use of fibrates in the treatment of dyslipoproteinemia and coronary heart disease. Fibrate Consensus Group. Am J Cardiol 81:912–927.

    PubMed  CAS  Google Scholar 

  117. Palmer RH (1987) Effects of fibric acid derivatives on biliary lipid composition. Am J Med 83: 37–43.

    PubMed  CAS  Google Scholar 

  118. Hanston PD, Horn JR (1998) Drug interactions with HMG Co A reductase inhibitors. Drug Interact Newsl 1998:103–106.

    Google Scholar 

  119. Guyton JR (2004) Extended-release niacin for modifying the lipoprotein profile. Expert Opin Pharmacotherapy 5:1385–1398.

    CAS  Google Scholar 

  120. Sirtori CR, Torreggiani D, Fumagalli R (1975) Mechanism of action of hypolipidemic drugs. Adv Exper Med Biol 63:123-133.

    CAS  Google Scholar 

  121. Knopp RH, Ginsberg J, Albers JJ et al. (1985) Contrasting effects of unmodified and time-release forms of niacin on lipoproteins in hyperlipidemic subjects: clues to mechanism of action of niacin. Metab Clin Exper 34:642–650.

    CAS  Google Scholar 

  122. Illingworth DR, Stein EA, Mitchel YB et al. (1994) Comparative effects of lovastatin and niacin in primary hypercholesterolemia. A prospective trial. Arch Internal Med 154:1586–1595.

    CAS  Google Scholar 

  123. Grundy SM, Vega L, McGovern ME et al. (2002) Efficacy, safety, and tolerability of once-daily niacin for the treatment of dyslipidemia associated with type 2 diabetes. Arch Intern Med 162:1568–1576.

    PubMed  CAS  Google Scholar 

  124. Canner PL, Furberg C, Terrum ML et al. (2003) Niacin decreases MI and total mortality in patients with metabolic syndrome: results from the coronary drug project. J Am Coll Cardiol 41:291A.

    Google Scholar 

  125. Gibbons LW, Gonzalez V, Gordon N, Grundy S (1995) The prevalence of side effects with regular and sustained-release nicotinic acid. Am J Med 99: 378–385.

    PubMed  CAS  Google Scholar 

  126. Elam MB, Hunninghake DB, Davis KB et al. (2000) Effect of niacin on lipid and lipoprotein levels and glycemic control in patients with diabetes and peripheral arterial disease: the ADMIT study: a randomized trial. Arterial Disease Multiple Intervention Trial. J Am Med Assoc 284:1263–1270.

    CAS  Google Scholar 

  127. Scandinavian Simvastatin Survival Study Group (1994) Randomized trial of cholesterol lowering in 4444 patients with coronary heart disease. Lancet 344:1383–1389.

    Google Scholar 

  128. Knopp RH (1999) drug therapy: drug treatment of lipid disorders. N Engl J Med 341:498–511.

    PubMed  CAS  Google Scholar 

  129. Mahley RW, Bersot TP (2001) Drug therapy for hypercholesterolemia and dyslipidemia. In Hardman JG, Limbird LE (eds). Goodman and Gillman’s the Pharmacological Basis of Therapeutics, 10th edn. McGraw Hill Publishers, pp. 971–1002.

    Google Scholar 

  130. Davignon J, Montigny M, Dufour R (1992) HMG-CoA reductase inhibitors: a look back and a look ahead. Can J Cardiol 8:843–864.

    PubMed  CAS  Google Scholar 

  131. Reihner E, Rudling M, Stahlberg D et al. (1990) Influence of pravastatin, a specific inhibitor of HMG-CoA reductase, on hepatic metabolism of cholesterol. N Engl J Med 323:224–228.

    PubMed  CAS  Google Scholar 

  132. Davignon J (2004) Beneficial cardiovascular pleiotropic effects of statins. Circulation 109:39–43.

    Google Scholar 

  133. Stalker TJ, Lefer AM, Scalia R (2001) A new HMG-CoA reductase inhibitor, rosuvastatin, exerts anti-inflammatory effects on the microvascular endothelium: the role of mevalonic acid. Br J Pharmacol 133: 406–412.

    PubMed  CAS  Google Scholar 

  134. Bradford RH, Shear CL, Chremos AN et al. (1991) Expanded clinical evaluation of lovastatin (EXCEL) study results, I: efficacy in modifying plasma lipoproteins and adverse event profile in 8245 patients with moderate hypercholesterolemia. Arch Internal Med 151:43–49.

    CAS  Google Scholar 

  135. Pierce LR, Wysowski DK, Gross TP (1990) Myopathy and rhabdomyolysis associated with lovastatin-gemfibrozil combination therapy. J Am Med Assoc 264:71–75.

    CAS  Google Scholar 

  136. Raza JA, Babb JD, Movahed A (2004) Optimal management of hyperlipidemia in primary prevention of cardiovascular disease. Int J Cardiol 97:355–366.

    PubMed  Google Scholar 

  137. Levine GN, Ali MN, Schafer AI (2001) Antithrombotic therapy in patients with acute coronary syndromes. Arch Int Med 161:937–948.

    CAS  Google Scholar 

  138. Brogan GX (2003) Update on acute coronary syndromes and implications for therapy. Exp Opin Invest Drugs 12:1971–1983.

    CAS  Google Scholar 

  139. Levine MN, Raskob G, Beyth RJ, Kearon C, Schulman S (2004) Hemorrhagic complications of anticoagulant treatment: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 2126:287S–310S.

    Google Scholar 

  140. Nawarskas JJ. Anderson JR (2001) Bivalirudin: a new approach to anticoagulation. Heart Disease 3:131–137.

    PubMed  CAS  Google Scholar 

  141. Hirsh J, Warkentin TE, Raschke R et al. (1998) Heparin and low-molecular-weight heparin. Mechanisms of action, pharmacokinetics, dosing considerations, monitoring, and safety. Chest 114:489S–510S.

    PubMed  CAS  Google Scholar 

  142. Witting JI, Bourdon P, Brezniak DV et al. (1992) Thombin-specific inhibition by and slow cleavage of hirulog-1. Biochem J 283:737–743.

    PubMed  CAS  Google Scholar 

  143. Fox I, Dawson A, Loynds P et al. (1993) Anticoagulant activity of Hirulog, a direct thrombin inhibitor, in humans. Thromb Haemost 69:157–163.

    PubMed  CAS  Google Scholar 

  144. Tideman PA (1999) Antithrombins and the importance of good control. Aust NZ J Med 29:444–451.

    CAS  Google Scholar 

  145. Bates SM, Weitz JI (1998) Direct thrombin inhibitors for treatment of arterial thrombosis: potential differences between bivalirudin and hirudin. Am J Cardiol 82:12P–18P

    PubMed  CAS  Google Scholar 

  146. Maraganore JM, Bourdon P, Jablonski J et al. (1990) Design and characterization of hirulogs: a novel class of bivalent peptide inhibitors of thrombin. Biochemistry 29:7095–7101.

    PubMed  CAS  Google Scholar 

  147. Shah PK (2002) Pathophysiology of coronary thrombosis: role of plaque rupture and erosion. Prog Cardiovasc Dis 44:357–368.

    PubMed  Google Scholar 

  148. Davies MJ (2000) The pathophysiology of acute coronary syndromes. Heart 83:361–366.

    PubMed  CAS  Google Scholar 

  149. Thompson SG, Kienast J, Pyke SDM, Haverkate F, van de Loo JCW (1995) Hemostatic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. N Engl J Med 332:635–641.

    PubMed  CAS  Google Scholar 

  150. Reimer KA, Lowe JE, Rasmussen MM et al. (1977) The wavefront phenomenon of ischemic cell death:Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 56:786–794.

    PubMed  CAS  Google Scholar 

  151. Fibrinolytic Therapy Trialists’ (FTT) Collaborative Group (1994) Indications for fibrinolytic therapy in suspected acute myocardial infarction: collaborative overview of early mortality and major morbidity results from all randomised trials of more than 1000 patients. Lancet 343:311–322. 

    Google Scholar 

  152. Fletcher AP, Alkjaersig N, Smyrinotis FE (1958) Treatment of patients suffering from early, myocardial infarction with massive and prolonged streptokinase therapy. Trans Assoc Am Physicians 71:287–296.  

    PubMed  CAS  Google Scholar 

  153. Cannon CP, McCabe CH, Gibson CM et al. (1997) TNK-tissue plasminogen activator in acute myocardial infarction. Circulation 95:351–356.

    PubMed  CAS  Google Scholar 

  154. Ohman EM, Harrington RA, Cannon CP et al. (2001) Intravenous thrombolysis in acute myocardial infarction. Chest 119:253S–277S.

    PubMed  CAS  Google Scholar 

  155. Yusuf S, Collins R, Peto R et al. (1985) Intravenous and intracoronary fibrinolytic therapy in acute myocardial infarction: overview of results on mortality, reinfarction and side-effects from 33 randomized controlled trials. Eur Heart J 6:556–585.

    PubMed  CAS  Google Scholar 

  156. Pennica D, Holmes WE, Kohr WJ et al. (1983) Cloning and expression of human tissue-type plasminogen activator cDNA in E coli. Nature 301:214–221.

    PubMed  CAS  Google Scholar 

  157. Berkowitz SD, Granger CB, Pieper KS et al. (1997) Incidence and predictors of bleeding after contemporary thrombolytic therapy for myocardial infarction. Circulation 95:2508–2516.

    PubMed  CAS  Google Scholar 

  158. EPIC Investigators (1994) Use of a monoclonal antibody directed against the platelet glycoprotein IIb/IIIa receptor in high-risk coronary angioplasty. N Engl J Med 330:956–961.

    Google Scholar 

  159. Barrett JS, Murphy G, Peerlinck K et al. (1994) Pharmacokinetics and pharmacodynamics of MK-383, a selective non-peptide platelet glycoprotein-IIb/IIIa receptor antagonist, in healthy men. Clin Pharmacol Ther 56:377–388.

    PubMed  CAS  Google Scholar 

  160. Kleiman NS, Raizner AE, Jordan R et al. (1995) Differential inhibition of platelet aggregation induced by adenosine diphosphate or a thrombin receptor-activating peptide in patients treated with bolus chimeric 7E3 Fab: implications for inhibition of the internal pool of GP IIb/IIIa receptors. J Am Coll Cardiol 26:1665–1671.

    PubMed  CAS  Google Scholar 

  161. Tcheng JE, Ellis SG, George BS et al. (1994) Pharmacodynamics of chimeric glycoprotein IIb/IIIa integrin antiplatelet antibody Fab 7E3 in high-risk coronary angioplasty. Circulation 90:1757–1764.

    PubMed  CAS  Google Scholar 

  162. Mascelli MA, Lance ET, Damaraju L et al. (1998) Pharmacodynamic profile of short-term abciximab treatment demonstrates prolonged platelet inhibition with gradual recovery from GP IIb/IIIa receptor blockade. Circulation 97:1680–1688.

    PubMed  CAS  Google Scholar 

  163. Phillips DR, Scarborough RM (1997) Clinical pharmacology of eptifibatide. Am J Cardiol 80:11–20.

    Google Scholar 

  164. Deckelbaum LI, Sax FL, Grossman W (1997) Tirofiban, a nonpeptide inhibitor of the platelet glycoprotein IIb/IIIA receptor. In Sasahara AA, Loscalzo J (eds) New Therapeutic Agents in Thrombosis and Thrombolysis. Marcel Dekker, New York, pp. 355–365.

    Google Scholar 

  165. Bachelot C, Rendu F, Gulino D (1995) Anti-GP IIb/IIIa antibodies: powerful tools to investigate function and regulation of an integrin. Semin Thromb Hemost 21:23–36.

    Article  PubMed  CAS  Google Scholar 

  166. Scarborough RM, Rose JW, Naughton MA et al. (1993) Characterization of the integrin specificities of disintegrins isolated from American pit viper venoms. J Biol Chem 268:1058–1065.

    PubMed  CAS  Google Scholar 

  167. Jordan RE, Wagner CL, Mascelli MA et al. (1996) Preclinical development of c7E3 Fab: a mouse/human chimeric monoclonal antibody fragment that inhibits platelet function by blockade of GP IIb/IIIa receptors with observations on the immunogenicity of c7E3 Fab in humans. In Horton MA (ed.) Adhesion Receptors as Therapeutic Targets. CRC Press, Boca Raton, FL, pp. 281–305 .

    Google Scholar 

  168. Llevadot J, Coulter SA, Giugliano RP (2000) A practical approach to the diagnosis and management of thrombocytopenia associated with glycoprotein IIb/IIIa receptor inhibitors. J Thromb Thrombolysis 9:175–180.

    PubMed  CAS  Google Scholar 

  169. Ferguson JJ, Kereiakes DJ, Adgey AA et al. (1998) Safe use of platelet GP IIb/IIIa inhibitors. Am Heart J 135:S77–S89.

    PubMed  CAS  Google Scholar 

  170. Coller BS: Blockade of platelet GpIIb/IIIa receptors as an antithrombotic strategy. Circulation 92:2373–2380.

    Google Scholar 

  171. Tcheng JE, Kereiakes DJ, Lincoff AM et al. (2001) Abciximab readministration: results of the ReoPro Readministration Registry. Circulation 104:870–875.

    PubMed  CAS  Google Scholar 

  172. Hirsh J, Anand SS, Halperin JL, Fuster V (2001) American Heart Association. Guide to anticoagulant therapy: Heparin: a statement for healthcare professionals from the American Heart Association. Circulation 103:2994–3018.

    PubMed  CAS  Google Scholar 

  173. Andersson LO, Barrowcliffe TW, Holmer E et al. (1979) Molecular weight dependency of the heparin potentiated inhibition of thrombin and activated factor X: effect of heparin neutralization in plasma. Thromb Res 5:531–541.

    Google Scholar 

  174. Weitz JI (1997) drug therapy: low-molecular-weight heparins. N Engl J Med 337:688–699.

    PubMed  CAS  Google Scholar 

  175. Bjornsson TO, Wolfram KM, Kitchell BB (1982) Heparin kinetics determined by three assay methods. Clin Pharmacol Ther 31:104–113.

    PubMed  CAS  Google Scholar 

  176. Lam LH, Silbert JE, Rosenberg RD (1976) The separation of active and inactive forms of heparin. Biochem Biophys Res Commun 69:570–577.

    PubMed  CAS  Google Scholar 

  177. Rosenberg RD, Bauer KA (1994) The heparin–antithrombin system: a natural anticoagulant mechanism. In: Colman RW, Hirsch J, Marder VJ, Salzman EW (eds). Hemostasis and Thrombosis: Basic Principles and Clinical Practice, 3rd edn. Philadelphia, JB Lippincott, pp. 837–860.

    Google Scholar 

  178. Beguin S, Lindhout T, Hemker HC (1988) The mode of action of heparin in plasma. Thromb Haemost 60:457–462.

    PubMed  CAS  Google Scholar 

  179. Kelton JG, Hirsh J (1980) Bleeding associated with antithrombotic therapy. Semin Hematol 17:259–291.

    PubMed  CAS  Google Scholar 

  180. Hunter J, Lonsdale RJ, Wenham PW, Frostick SP (1993) Heparin induced thrombosis: an important complication of heparin prophylaxis for thromboembolic disease in surgery. Br Med J 307:53–55.

    CAS  Google Scholar 

  181. Bhandari M, Hirsh J, Weitz JI et al. (1998) The effects of standard and low molecular weight heparin on bone nodule formation in vitro. Thromb Haemost 80:413–417.

    PubMed  CAS  Google Scholar 

  182. Schafer AI (1996) Low-molecular-weight heparin—an opportunity for home treatment of venous thrombosis. N Engl J Med 334:724–725.

    PubMed  CAS  Google Scholar 

  183. Kearon C, Hirsh J (1996) Anticoagulation in venous thromboembolism. In Smith TW (ed.) Cardiovascular Therapeutics. Philadelphia, WB Saunders, pp. 442–455.

    Google Scholar 

  184. Kaul S, Shah PK (2000) Low molecular weight heparin in acute coronary syndrome: Evidence for superior or equivalent efficacy compared with unfractionated heparin? J Am Coll Cardiol 35:1699–1712.

    PubMed  CAS  Google Scholar 

  185. Antman EM. Cohen M. Radley D et al. (1999) Assessment of the treatment effect of enoxaparin for unstable angina/non-Q-wave myocardial infarction. TIMI 11B-ESSENCE meta-analysis. Circulation 100:1602–1608.

    Google Scholar 

  186. Harenberg J (1990) Pharmacology of low molecular weight heparins. Semin Thromb Hemost 16:12–18.

    PubMed  Google Scholar 

  187. Armstrong P (1997) Heparin in acute coronary disease: requiem for a heavyweight? N Engl J Med 337:492–494.

    PubMed  CAS  Google Scholar 

  188. CAPRIE Steering Committee (1996) A randomized, blinded trial of clopidogrel versus aspirin in patients at risk of ischemic events (CAPRIE). Lancet 348:1329–1339.

    Google Scholar 

  189. The Clopidogrel in Unstable Angina to Prevent Recurrent Events Trial Investigators (2001) Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med 345:494–502.

    Google Scholar 

  190. Desager JP (1994) Clinical pharmacokinetics of ticlopidine. Clin Pharmacokinet 26:347–355.

    PubMed  CAS  Google Scholar 

  191. Lau WC, Gurbel PA, Watkins PB et al. (2004) Contribution of hepatic cytochrome P450 3A4 metabolic activity to the phenomenon of clopidogrel resistance. Circulation 109:166–171.

    PubMed  CAS  Google Scholar 

  192. Savi P, Combalbert J, Gaich C et al. (1994) The antiaggregating activity of clopidogrel is due to a metabolic activation by the hepatic cytochrome P450-1A. Thromb Haemost 72:313–317.

    PubMed  CAS  Google Scholar 

  193. Müller I, Seyfarth M, Rudiger S, Wolf B, Pogatsa-Murray G, Schomig A, Gawaz M (2001) Effect of a high loading dose of clopidogrel on platelet function in patients undergoing coronary stent placement. Heart 85:92–93.

    PubMed  Google Scholar 

  194. Quinn MJ, FitzGerald DJ (1999) Ticlopidine and clopidogrel. Circulation. 100:1667–72.

    PubMed  CAS  Google Scholar 

  195. Savi P, Pflieger AM, Herbert JM (1996) cAMP is not an important messenger for ADP-induced platelet aggregation. Blood Coagul Fibrinolysis 7:249–252.

    PubMed  CAS  Google Scholar 

  196. Heptinstall S, May JA, Glenn JR, Sanderson HM, Dickinson JP, Wilcox RG (1995) Effects of ticlopidine administered to healthy volunteers on platelet function in whole blood. Thromb Haemost 74:1310–1315.

    PubMed  CAS  Google Scholar 

  197. Boneu B, Destelle G (1996) Platelet anti-aggregating activity and tolerance of clopidogrel in atherosclerotic patients. Thromb Haemost 76:939–943.

    PubMed  CAS  Google Scholar 

  198. Whitlon DS, Sadowski JA, Suttie JW (1978) Mechanisms of coumarin action: significance of vitamin K epoxide reductase inhibition. Biochemistry 17:1371–1377.

    PubMed  CAS  Google Scholar 

  199. Choonara IA, Malia RG, Haynes BP et al. (1988) The relationship between inhibition of vitamin K 1,2,3-epoxide reductase and reduction of clotting factor activity with warfarin. Br J Clin Pharmacol 25:1–7.

    PubMed  CAS  Google Scholar 

  200. Malhotra OP, Nesheim ME, Mann KG (1985) The kinetics of activation of normal and gamma carboxy glutamic acid deficient prothrombins. J Biol Chem 260:279–287.

    PubMed  CAS  Google Scholar 

  201. The Medical Research Council’s General Practice Research Framework (1998) Thrombosis prevention trial: randomised trial of low-intensity oral anticoagulation with warfarin and low-dose aspirin in the primary prevention in ischemic heart disease in men at increased risk. Lancet 351:233–241.

    Google Scholar 

  202. O’Reilly RA (1986) Warfarin metabolism and drug-drug interactions. In Wessler S, Becker CG, Nemerson Y (eds) The New Dimensions of Warfarin Prophylaxis (vol. 214): Advances in Experimental Medicine and Biology. New York, Plenum, pp. 205–212.

    Google Scholar 

  203. Aithal GP, Day CP, Kesteven, PJ et al. (1999) Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 353:717–719.

    PubMed  CAS  Google Scholar 

  204. Majerus PW, Tollefsen DM (2001) Anticoagulant, thrombolytic, and antiplatelet drugs. In Hardman JG, Limbird LE (eds). Goodman and Gillman’s the Pharmacological Basis of Therapeutics, 10thy edn. McGraw Hill Publishers, pp. 1519–1538.

    Google Scholar 

  205. Gage BF, Fihn SD, White RH (2000) Management and dosing of warfarin therapy. Am J Med 109:481–488.

    PubMed  CAS  Google Scholar 

  206. Wessler S, Gitel SN (1984) Warfarin: from bedside to bench. N Engl J Med 311:645–652.

    PubMed  CAS  Google Scholar 

  207. Zivelin A, Rao VM, Rapaport SI (1993) Mechanism of the anticoagulant effect of warfarin as evaluated in rabbits by selective depression of individual procoagulant vitamin-K dependent clotting factors. J Clin Invest 92:2131–2140.

    PubMed  CAS  Google Scholar 

  208. Furie B, Diuguid CF, Jacobs M et al. (1990) Randomized prospective trial comparing the native prothrombin antigen with the prothrombin time for monitoring anticoagulant therapy. Blood 75:344–349.

    PubMed  CAS  Google Scholar 

  209. Levine MN, Raskob G, Landefeld S et al. (1995) Hemorrhagic complications of anticoagulant treatment. Chest 108:276–290.

    Google Scholar 

  210. Sallah S, Thomas DP, Roberts HR (1997) Warfarin and heparin-induced skin necrosis and purple toe syndrome: Infrequent complications of anticoagulant treatment. Thromb Haemost 78:785–790.

    PubMed  CAS  Google Scholar 

  211. Hall JG, Pauli RM, Wilson KM (1980) Maternal and fetal sequelae of anticoagulation during pregnancy. Am J Med 68:122–140.

    PubMed  CAS  Google Scholar 

  212. Gustafsson D, Nyström J, Carlsson S et al. (2001) The direct thrombin inhibitor melagatran and its oral prodrug H 376/95: intestinal absorption properties, biochemical and pharmacodynamic effects. Thromb Res 101:171–181.

    PubMed  CAS  Google Scholar 

  213. Johansson LC, Frison L, Logren U, Fager G, Gustafsson D, Eriksson UG (2003) Influence of age on the pharmacokinetics and pharmacodynamics of ximelagatran, an oral direct thrombin inhibitor. Clin Pharmacokinet 42:381–392.

    PubMed  CAS  Google Scholar 

  214. Francis CW (2004) Ximelagatran: a new oral anticoagulant. Best Practice Res Clin Haematol 17:139–152.

    CAS  Google Scholar 

  215. Klement P, Carlsson S, Rak J et al. (2003) The benefit-to-risk profile of melagatran is superior to that of hirudin in a rabbit arterial thrombosis prevention and bleeding model. J Thromb Haemostasis 1:587–594.

    CAS  Google Scholar 

  216. Mattsson C, Menschik-Lundin A, Nylander S et al. (2001) Effect of different types of thrombin inhibitors on thrombin/thrombomodulin modulated activation of protein C in vitro. Thrombosis Res 104:475–486.

    CAS  Google Scholar 

  217. Boström SL, Hansson GFH, Kjaer M, Sarich TC (2003) Effects of melagatran, the active form of the oral direct thrombin inhibitor ximelagatran, and dalteparin, on the endogenous thrombin potential in venous blood from healthy male subjects. Blood Coagul Fibrinolysis 14:457–462.

    PubMed  Google Scholar 

  218. Nylander S, Mattsson C (2003) Thrombin-induced platelet activation and its inhibition by anticoagulants with different modes of action. Blood Coagul Fibrinolysis 14:159–167.

    PubMed  CAS  Google Scholar 

  219. Gustafsson D, Antonsson T, Bylund R et al. (1998) Effects of melagatran, a new low-molecular-weight thrombin inhibitor, on thrombin and fibrinolytic enzymes. Thromb Haemost 79:110–118.

    PubMed  CAS  Google Scholar 

  220. Pimanda JE, Lowe HC, Hogg PJ, Chesterman CN, Khachigian LM (2003) Novel and emerging therapies in cardiology and haematology. Current Drug Targets - Cardiovasc Haematol Disorders 3:101–123.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raza, J., Kreeger, R., Movahed, A. (2009). Cardiovascular Medications: Pharmacokinetics and Pharmacodynamics. In: Movahed, A., Gnanasegaran, G., Buscombe, J., Hall, M. (eds) Integrating Cardiology for Nuclear Medicine Physicians. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78674-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78674-0_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78673-3

  • Online ISBN: 978-3-540-78674-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics