Skip to main content

Pathophysiology of Coronary Artery Disease

  • Chapter

Abstract

Coronary artery disease (CAD), also called coronary heart disease (CHD) is the most common form of heart disease and is a serious health problem worldwide, leading to cardiovascular disability and death. It is the leading cause of mortality in the UK [1, 2] (Table 2.1). One recent estimate is that approximately 2.65 million people in the UK are suffering from CAD, and of these 1.2 million have had a myocardial infarction. There were an estimated 275,000 heart attacks in the UK in 2001, and 335,000 new cases of angina are diagnosed each year [2]. According to data from the Centre for Disease Control and Prevention (CDC) in the USA, 761,085 Americans died due to heart diseases in 1981 and 700,142 in 2001 (Table 2.2). The slight decline in mortality is most likely related to improved therapeutic options and better preventive strategies. Approximately, two million Europeans die from coronary artery disease each year.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Office of National Statistics (1999) London Deaths: 1998. Mortality Statistics by Cause in 1998. HMSO.

    Google Scholar 

  2. National Institute for Clinical Excellence (2003) Final Appraisal Determination. Myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction. October.

    Google Scholar 

  3. WHO (1997) The World Health Report 1997. Conquering, suffering, enriching humanity. Geneva, World Health Organization.

    Google Scholar 

  4. WHO (2002) The World Health Report 2002. Reducing risks, promoting healthy life. Geneva, World Health Organization.

    Google Scholar 

  5. Reddy KS (2004) Cardiovascular disease in the non-western countries. NEJM 350(24):2438–2440.

    Article  PubMed  CAS  Google Scholar 

  6. Murray CJL, Lopez AD (1996) The global burden of disease: a comprehensive assessment of mortality and disability from diseases, injuries and risk factors in 1990 and projected to 2020. Harvard School of Public Health on behalf of WHO and the World Bank, USA.

    Google Scholar 

  7. Tokin A (ed.) (2003) Atherosclerosis and Heart Disease. Martin Dunitz, New York

    Google Scholar 

  8. Libby P (1995) Molecular bases of the acute coronary syndromes. Circulation 91:2844–2850.

    PubMed  CAS  Google Scholar 

  9. Libby P (1996) Atheroma: more than mush. Lancet 348:S4–S7.

    Article  PubMed  CAS  Google Scholar 

  10. Kolodgie FD, Gold HK, Allen P. Burke AP et al. (2003) Intraplaque hemorrhage and progression of coronary atheroma. NEJM 349:2316–2325.

    Article  Google Scholar 

  11. Strong JP et al. (1999) JAMA 281:725–735.

    Article  Google Scholar 

  12. Myers RH, Kiely DK, Cupples LA, Kannel WB (1990) Parental history is an independent risk factor for coronary artery disease: the Framingham Study. Am Heart J 120(4):963–969.

    Article  PubMed  CAS  Google Scholar 

  13. Feng DaLi, Lindpaintner K, Larson GM et al. (2001) Platelet glycoprotein iiia pla polymorphism, fibrinogen, and platelet aggregability: the Framingham Heart Study. Circulation 104:140–144.

    Google Scholar 

  14. Kannel WB, McGee DL (1979) Diabetes and cardiovascular risk factors: the Framingham study. Circulation 59:8–13.

    PubMed  CAS  Google Scholar 

  15. Levine GN, Keaney JF, Vita JA (1995) Cholesterol reduction in cardiovascular disease – clinical benefits and possible mechanisms. N Engl J Med 332:512–521.

    Article  PubMed  CAS  Google Scholar 

  16. Manolio T (2003) Novel risk markers and clinical practice. N Engl J Med 349:1587–1589.

    Article  PubMed  CAS  Google Scholar 

  17. Galobardes B, Costanza MC, Bernstein MS et al. (2003) Trends in risk factors for lifestyle-related diseases by socioeconomic position in Geneva, Switzerland, 1993-2000: health inequalities persist. Am J Public Health 93:1302–1309.

    Article  PubMed  Google Scholar 

  18. Lee J, Heng D, Chia, KS et al. (2001) Risk factors and incident coronary heart disease in Chinese, Malay and Asian Indian males: the Singapore Cardiovascular Cohort Study. Int J Epidemiol 30:983–988.

    Article  PubMed  CAS  Google Scholar 

  19. Raitakari OT, Adams MR, Celermajer DS (1999) Effect of Lp(a) on the early functional and structural changes of atherosclerosis. Arterioscler Thromb Vasc Biol 19(4):990-995.

    PubMed  CAS  Google Scholar 

  20. Ridker PM, Buring JE, Shih J et al. (1998) Prospective study of C-reactive protein and the risk of future cardiovascular events among apparently healthy women. Circulation 98(8):731–733.

    PubMed  CAS  Google Scholar 

  21. Selwyn AP, Kinlay S, Libby P, Ganz P (1997) Atherogenic lipids, vascular dysfunction, and clinical signs of ischemic heart disease. Circulation 95(1):5–7.

    PubMed  CAS  Google Scholar 

  22. Braunwald E (1971) Control of myocardial oxygen consumption: physiologic and clinical considerations. Am J Cardiol 27(4):416–432.

    Article  PubMed  CAS  Google Scholar 

  23. Braunwald E (2000) Myocardial oxygen consumption: the quest for its determinants and some clinical fallout. J Am Coll Cardiol 35(Suppl B):45B–48B.

    PubMed  CAS  Google Scholar 

  24. Takaoka H, Takeuchi M, Odake M et al. (1993) Comparison of hemodynamic determinants for myocardial oxygen consumption under different contractile states in human ventricle. Circulation 87(1):59–69.

    PubMed  CAS  Google Scholar 

  25. Austin RE Jr, Smedira NG, Squiers TM, Hoffman JI (1994) Influence of cardiac contraction and coronary vasomotor tone on regional myocardial blood flow. Am J Physiol 266(6 Pt 2):H2542–H2553.

    PubMed  Google Scholar 

  26. Cryer A (1983) Scale and diversity of interaction at the vascular endothelium. In Biochemical Interactions of the Endothelium. Elsevier, Amsterdam, pp. 1–3.

    Google Scholar 

  27. Chilian WM (1997) Coronary microcirculation in health and disease. Circulation 95(2):522–528.

    PubMed  CAS  Google Scholar 

  28. Embrey RP, Brooks LA, Dellsperger KC (1997) Mechanism of coronary microvascular responses to metabolic stimulation. Cardiovasc Res 35(1):148–157.

    Article  PubMed  CAS  Google Scholar 

  29. Furchgott RF, Zawadzky JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376.

    Article  PubMed  CAS  Google Scholar 

  30. Simionescu M, Simionescu N (1986) Functions of the endothelial cell surface. Annu Rev Physiol 48:279–304.

    Article  PubMed  CAS  Google Scholar 

  31. Furchgott RF (1996) The discovery of endothelium-derived relaxing factor and its importance in the identification of nitric oxide. JAMA 276(14):1186–1188.

    Article  PubMed  CAS  Google Scholar 

  32. Yada T, Richmond KN, Van Bibber R et al. (1999) Role of adenosine in local metabolic coronary vasodilation. Am J Physiol 276(5 Pt 2):H1425–H1433.

    PubMed  CAS  Google Scholar 

  33. Belardinelli L, Linden J, Berne RM (1989) The cardiac effects of adenosine. Prog Cardiovasc Dis 32(1):73–97.

    Article  PubMed  CAS  Google Scholar 

  34. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium- derived relaxing factor. Nature 327:524.

    Article  PubMed  Google Scholar 

  35. Seo B, Oemar BS, Siebermann R, von Segesser L, Luscher TF (1994) Both ETA and ETB receptors mediate contraction to endothelin-I in human blood vessels. Circulation 89:1203–1208.

    PubMed  CAS  Google Scholar 

  36. Panza JA, Casino PR, Kilcoyne CM, Quyyumi AA (1993) Role of endothelium-derived nitric oxide in the abnormal endothelium-dependent vascular relaxation of patients with essential hypertension. Circulation 87:1468–1474.

    PubMed  CAS  Google Scholar 

  37. Smits P, Williams SB, Lipson DE et al. (1995) Endothelial release of nitric oxide contributes to the vasodilator effect of adenosine in humans. Circulation 92(8):2135–2141.

    PubMed  CAS  Google Scholar 

  38. Maxwell AJ, Cooke JP (1999) The role of nitric oxide in atherosclerosis. Coronary Artery Dis 1999:277–286.

    Google Scholar 

  39. Quyyumi AA, Dakak N, Mulcahy D et al (1997) Nitric oxide activity in the atherosclerotic human coronary circulation. J Am Coll Cardiol 29(2):308–317.

    Article  PubMed  CAS  Google Scholar 

  40. Mombouli JV, Vanhoutte PM (1999) Endothelial dysfunction: from physiology to therapy. J Mol Cell Cardiol 31(1):61–74.

    Article  PubMed  CAS  Google Scholar 

  41. Kinlay S, Ganz P (1997) Role of endothelial dysfunction in coronary artery disease and implications for therapy. Am J Cardiol 80(9A):11I–16I.

    Article  PubMed  CAS  Google Scholar 

  42. Maseri A, Crea F, Kaski JC, Crake T (1991) Mechanisms of angina pectoris in syndrome X. J Am Coll Cardiol 17(2):499–506.

    Article  PubMed  CAS  Google Scholar 

  43. Hasdai D, Gibbons RJ, Holmes DR Jr et al. (1997) Coronary endothelial dysfunction in humans is associated with myocardial perfusion defects. Circulation 96(10):3390–3395.

    PubMed  CAS  Google Scholar 

  44. Anderson TJ, Meredith IT, Yeung AC et al. (1995) The effect of cholesterol-lowering and antioxidant therapy on endothelium-dependent coronary vasomotion. N Engl J Med 332(8): 488–493.

    Article  PubMed  CAS  Google Scholar 

  45. Ross R (1999) Atherosclerosis – an inflammatory disease. N Engl J Med 340(2):115–126.

    Article  PubMed  CAS  Google Scholar 

  46. Vorchheimer DA, Fuster V (2001) Inflammatory markers in coronary artery disease. Let prevention douse the flames. JAMA 286:2154–2156.

    Article  PubMed  CAS  Google Scholar 

  47. Blake GJ, Ridker PM (2001) Novel clinical markers of vascular wall inflammation. Circulation Res 89:763–771.

    Article  PubMed  CAS  Google Scholar 

  48. Lagrand WK, Visser CA et al. (1999) C-reactive protein as a cardiovascular risk factor: more than an epiphenomenon? Circulation 100:96–102.

    PubMed  CAS  Google Scholar 

  49. Ridker P, Glynn R, Hennekens C (1998) C-reactive protein adds to the predictive value of total and HDL cholesterol in determining risk of first myocardial infarction. Circulation 97:2007–2011.

    PubMed  CAS  Google Scholar 

  50. Epstein SE, Zhou YF et al. (1999) Infection and atherosclerosis: emerging mechanistic paradigms. Circulation 100:e20–e28.

    PubMed  CAS  Google Scholar 

  51. Kuvin JT, Kimmelstiel CD (1999) Infectious causes of atherosclerosis. Am Heart J 137:216–226.

    Article  PubMed  CAS  Google Scholar 

  52. Gupta S, Leatham EW et al. (1997) Elevated Chlamydia pneumoniae antibodies, cardiovascular events, and azithromycin in male survivors of myocardial infarction. Circulation 96:404–407.

    PubMed  CAS  Google Scholar 

  53. Danesh J, Whincup P, Walker M et al. (2000) Low grade inflammation and coronary heart disease: prospective study and updated meta-analyses. BMJ 321:199–204.

    Article  PubMed  CAS  Google Scholar 

  54. Helgadottir A, Manolescu A, Thorleifsson G et al. (2004) The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nature Genetics 36:233–239.

    Article  PubMed  CAS  Google Scholar 

  55. Baroldi G, Mantero O, Scomazzoni G (1956) The collaterals of the coronary arteries in normal and pathologic hearts. Circulation Res. 4:223–229.

    PubMed  CAS  Google Scholar 

  56. Koerselman J, Graaf YVD, Jaegere P et al. (2003) Coronary collaterals: an important and underexposed aspect of coronary artery disease. Circulation 107:2507.

    Article  PubMed  Google Scholar 

  57. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395.

    Article  PubMed  CAS  Google Scholar 

  58. Conway EM, Collen D, Carmeliet P (2001) Molecular mechanisms of blood vessel growth. Cardiovasc Res 49:507–521.

    Article  PubMed  CAS  Google Scholar 

  59. Buschmann I, Schaper W (2000) The pathophysiology of the collateral circulation (arteriogenesis). J Pathol 190:338–342.

    Article  PubMed  CAS  Google Scholar 

  60. Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 29:843–845.

    Article  Google Scholar 

  61. Charney R, Cohen M (1993) The role of the coronary collateral circulation in limiting myocardial ischemia and infarct size. Am Heart J 126(4):937–945.

    Article  PubMed  CAS  Google Scholar 

  62. Sabia PJ, Powers ER, Ragosta M et al. (1992) An association between collateral blood flow and myocardial viability in patients with recent myocardial infarction. N Engl J Med 327:1825–1831.

    PubMed  CAS  Google Scholar 

  63. Fukai M, Ii M, Nakakoji T et al. (2000) Angiographically demonstrated coronary collaterals predict residual viable myocardium in patients with chronic myocardial infarction: a regional metabolic study. J Cardiol 35:103–111.

    PubMed  CAS  Google Scholar 

  64. Lee SH, Wolf PL, Escudero R et al. (2000) Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med 342(9):626–633.

    Article  PubMed  CAS  Google Scholar 

  65. Henry TD (1999) Therapeutic angiogenesis. BMJ 318:1536–1539.

    PubMed  CAS  Google Scholar 

  66. Rosengart TK (2003) Commentary: Gene therapy: true promise fulfilled. Nature 10.

    Google Scholar 

  67. Rosengart TK, Patel SR, Crystal RG (1999) Therapeutic angiogenesis: protein and gene therapy delivery strategies. J Cardiovasc Risk 6:29–40.

    PubMed  CAS  Google Scholar 

  68. Syed JS, Sanborn TA, Rosengart TK (2004) Therapeutic angiogenesis: a biologic bypass. Cardiology 101:131–143.

    Article  PubMed  Google Scholar 

  69. Schlach P, Rahman GF, Patejunas G et al. (2004) Adenoviral-mediated transfer of vascualr endothelial growth factor 121 cDNA enhances myocardial perfusion and exercise performance in the nonischemic state J Thorac Cardiovasc Surg 127:535–540.

    Article  CAS  Google Scholar 

  70. Lopez JJ, Laham RJ, Stamler A et al. (1998) Therapeutic angiogenesis in chronic myocardial ischemia: intracoronary vs. extracoronary delivery strategies. Cardiovasc Res 40:272–281.

    Article  PubMed  CAS  Google Scholar 

  71. Udelson JE, Dilsizian V, Roger J et al. (2000) Therapeutic angiogenesis with recombinant fibroblast growth factor-2 improves stress and rest myocardial perfusion abnormalities in patients with severe symptomatic chronic coronary artery disease. Circulation 102:1605–1610.

    PubMed  CAS  Google Scholar 

  72. Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146(1): 3-15.

    PubMed  CAS  Google Scholar 

  73. Colucci WS (1996) Apoptosis in heart. N Engl J Med 335:1224–1226.

    Article  PubMed  CAS  Google Scholar 

  74. Kang PM, Izu S (2000) Apoptosis and heart failure: a critical review of the literature. Circulation Res 86:1107–1111.

    PubMed  CAS  Google Scholar 

  75. Yaoita H, Ogawa K, Maehara K et al. (2000) Apoptosis in relevant clinical situations: contribution of apoptosis in myocardial infarction. Cardiovasc Res 45:630–641.

    Article  PubMed  CAS  Google Scholar 

  76. Gill C, Mestril R, Samali A (2002) Losing heart: the role of apoptosis in heart disease – a novel therapeutic target? FASEB J. 16:135-146.

    Article  PubMed  CAS  Google Scholar 

  77. Olivetti G, Abbi R, Quaini F (1997) Apoptosis in the failing human heart. New Engl J Med 336:1131–1141.

    Article  PubMed  CAS  Google Scholar 

  78. O’Brien NW, Gellings N et al. (2003) Factor associated with sphingomyelinase activation and its role in cardiac cell death. Circulation Res 92:589–591.

    Article  PubMed  CAS  Google Scholar 

  79. Haunstetter A, Izumo S (2000) Toward antiapoptosis as a new treatment modality. Circulation Res 86:371–376.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mahmood, S. (2009). Pathophysiology of Coronary Artery Disease. In: Movahed, A., Gnanasegaran, G., Buscombe, J., Hall, M. (eds) Integrating Cardiology for Nuclear Medicine Physicians. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78674-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78674-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78673-3

  • Online ISBN: 978-3-540-78674-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics