Skip to main content
  • 1772 Accesses

Abstract

The technique of cardiac magnetic resonance imaging (MRI) has been used for a long time for the evaluation of pericardial disease, cardiac masses and complex congenital heart diseases [1–4]. MRI has the ability to quantify pulmonary and systemic flow, valvular regurgitation, and pulmonary-to-systemic ratios across shunts. During recent years there have been impressive advances in technology, particularly in resolution and imaging speed, enabling MRI to enter into the mainstream of diagnostic imaging for coronary artery disease. However, despite its overwhelming advantages in imaging, it still has certain limitations (Table 16.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boxt LM (1996) MR imaging of congenital heart disease. Magn Reson Imaging Clin N Am 4:327–359.

    PubMed  CAS  Google Scholar 

  2. Ho VB, Kinney JB, Sahn DJ (1996) Contribution of newer MR imaging strategies for congenital heart disease. Radiographics 16:43–60.

    PubMed  CAS  Google Scholar 

  3. Brickner ME, Hillis LD, Lange RA (2000) Congenital heart disease in adults. N Engl J Med 342:256-63.

    Article  PubMed  CAS  Google Scholar 

  4. Fogel MA, Hubbard A, Weinberg PM (2001) Simplified approach for assessment of intracardiac baffles and extracardiac conduits in congenital heart survey with two- and three-dimensional magnetic resonance imaging. Am Heart J 142:1028–36.

    Article  PubMed  CAS  Google Scholar 

  5. Bloch F (1946) Nuclear induction. Phys Rev 70:460-473.

    Article  CAS  Google Scholar 

  6. Purcell E, Torrey H, Pound R (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69:37–38.

    Article  CAS  Google Scholar 

  7. Garroway A, Grannell P, Mansfield P (1974) Image formation in NMR by a selective irradiative pulse. J Phys C: Solid State Phys 7:L457–L462.

    Article  CAS  Google Scholar 

  8. Lauterbur L (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242:190–191.

    Article  CAS  Google Scholar 

  9. Moore CC, O’Dell WG, Mcweight ER et al. (1992) Calculation of three-dimensional left ventricular strains from biplanar tagged images. J Magn Reson Imaging 2:165–75.

    Article  PubMed  CAS  Google Scholar 

  10. O’Dell WG, Moore CC, Hunter WC et al. (1995) Three-dimensional myocardial deformations: calculation with displacement field fitting to tagged MR images. Radiology 195:829–35.

    PubMed  CAS  Google Scholar 

  11. Engel HJ, Torres C, Page HJL (1975) Major variations in anatomical origin of the coronary arteries: angiographic observations in 4250 patients without associated congenital heart disease. Catheterization Cardiovas Diagn 1:157–69.

    Article  CAS  Google Scholar 

  12. McConnell MV, Ganz P, Sewyn AP et al. (1995) Identification of the anomalous coronary arteries and their anatomic course by magnetic resonance angiography. Circulation 92:3158–62.

    PubMed  CAS  Google Scholar 

  13. Post JC, Van Rossum AC, Bronzwaer JG et al. (1995) Magnetic resonance angiography of anomalous coronary arteries. A new gold standard for delineating the proximal course? Circulation 92:3163–3171.

    PubMed  CAS  Google Scholar 

  14. Greil GF, Stuber M, Botnar RM et al. (2002) Coronary magnetic resonance angiography in adolescents and young adults with Kawasaki disease. Circulation 105:908-911.

    Article  PubMed  Google Scholar 

  15. Vrachliotis TG, Bis KG, Aliabadi D et al. (1997) Contrast enhanced breath hold MR angiography for evaluating patency of coronary artery bypass grafts. Am J Roentgenol 168:1073–1080.

    CAS  Google Scholar 

  16. Wintersperger BJ, Engelmann MG, Von Smekal A et al. (1998) Patency of coronary bypass grafts: assessment with breath hold contrast enhanced MR angiography—value of a non-electrocardiographically triggered technique. Radiology 208:345–351.

    PubMed  CAS  Google Scholar 

  17. Dulce MC, Mostbeck GH, Friese KK et al. (1993) Quantifications of left ventricular volumes and function with cine MR imaging: comparison of geometrical models with three-dimentional data. Radiology 188:371–376.

    PubMed  CAS  Google Scholar 

  18. Chuang ML, Hibberd MG, Salton CJ et al. (2000) Importance of imaging method over imaging modality in noninvasive determination of left ventricular volumes and ejection fraction: assessment by two and three dimensional echocardiography and magnetic resonance imaging. J Am Coll Cardiol 35:477–484.

    Article  PubMed  CAS  Google Scholar 

  19. Matheijssen NA, Baur LH, Reiber JH et al. (1996) Assessment of the left ventricular volume and mass by cine magnetic resonance imaging in patient with anterior myocardial infarction: intraobserver and interobserver variability on contour detection. Int J Card Imaging 12:11–19.

    Article  PubMed  CAS  Google Scholar 

  20. Niwa K, Uchishiba M, Aotsuka H et al. (1996) Measurements of ventricular volumes by cine magnetic resonance imaging in complex congenital heart disease with morphologically abnormal ventricles. Am Heart J 131:567–575.

    Article  PubMed  CAS  Google Scholar 

  21. Zerhouni EA, Parish DM, Rogers WJ et al. (1988) Human heart: tagging with MR imaging – a method for noninvasive assessment of myocardial motion. Radiology 169:59–63.

    PubMed  CAS  Google Scholar 

  22. Klein C, Nekolla SG, Bengel FM et al. (2002) Assessment of myocardial viability with contrast enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation 105:162–167.

    Article  PubMed  Google Scholar 

  23. Kim RJ, Fieno DS, Parrish TB et al. (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100(19):1992–2002.

    PubMed  CAS  Google Scholar 

  24. Schelberd HR (2002) F-18 deoxyglucose and the assessment of myocardial viability. Semin Nucl Med 32:60-69.

    Article  Google Scholar 

  25. Stillman AE, Wilke N, Jerosch-Herold M (1999) Myocardial viability. Radiol Clin North Am 37:361–378.

    Article  PubMed  CAS  Google Scholar 

  26. Lauerma K, Niemi P, Hanninen H et al. (2000) Multimodality MR imaging assessment of the myocardial viability: combination first pass and late contrast enhancement to wall motions dynamics and comparison with FDG-PET: initial experience. Radiology 217:729–736.

    PubMed  CAS  Google Scholar 

  27. Simonetti OP, Kim RJ, Fieno DS et al. (2001) An improved MR imaging tecnique for the visualization of the myocardial infarction. Radiology 218:215–233.

    PubMed  CAS  Google Scholar 

  28. Earls JP, Ho VB, Foo TK et al. (2002) Cardiac MRI: recent progress and continued challenges. J Magn Reson Imaging 16:111–127.

    Article  PubMed  Google Scholar 

  29. Lee VS, Resnick D, Tiu SS et al. (2004) MR imaging evaluation of myocardial viability in the setting of equivocal SPECT results with Tc-99m sestamibi. Radiology 30:191–197.

    Article  Google Scholar 

  30. VanHoe L, Vanderheyden M (2004) Ischemic cardiomyopathy: value of different MRI techniques for prediction of functional recovery after revascularization. Am J Roentgenol 182:95–100.

    Google Scholar 

  31. Devlin AM, Moore MR, Ostman-Smith I et al. (1999) A comparison of the MRI and echocardiography in hypertrophic cardiomyopathy. Br J Radiol 72:258–264.

    PubMed  CAS  Google Scholar 

  32. Pons-Llodo G, Carreras F, Borras X et al. (1997) Comparison of morphologic assessment of hypertrophic cardiomyopathy by magnetic resonance versus echocardiographic imaging. Am J Cardiol 79:1651–1656.

    Article  Google Scholar 

  33. Schulz-Menger J, Strohm O, Waigand J et al. (2000) The value of magnetic resonance imaging of the left ventricular outflow tract in patient with hypertrophic obstructive cardiomyopathy after septal artery embolizations. Circulation 101:1764–1766.

    PubMed  CAS  Google Scholar 

  34. Van Dockum WG, ten Cate FJ, ten Berg JM et al. (2004) Myocardial infarction after percutaneous transluminal septal myocardial ablation in hypertrophic obstructive cardiomyopathy: evaluation by contrast-enhanced magnetic resonance imaging. J Am Coll Cardiol 43:27–34.

    Article  PubMed  Google Scholar 

  35. Masui T, Finck S, Higgins CB (1992) Constructive pericarditis and restrictive cardiomyopathy: evaluation with MR imaging. Radiology 182:369–373.

    PubMed  CAS  Google Scholar 

  36. Sechtem U, Higgins CB, Sommerhoff BA et al. (1987) Magnetic resonance imaging of restrictive cardiomyopathy. Am J Cardiol 59:480–482.

    Article  PubMed  CAS  Google Scholar 

  37. Thiene G, Nava A, Corrado D et al. (1988) Right ventricular cardiomyopathy and sudden death in young people. N Engl J Med 318:129–133.

    PubMed  CAS  Google Scholar 

  38. Fontain G, Fontaliran F, Hebert JL et al. (1999) Arrhythmogenic right ventricular dysplasia. Annu Rev Med50:17–35.

    Article  Google Scholar 

  39. Blake L, Scheinman B, Higgins C (1994) MR features of arrhythmogenic right ventricular dysplasia. AJR Am J Roentgenol 162:809–812.

    PubMed  CAS  Google Scholar 

  40. Burke AP, Fabr A, Tashko G et al. (1998) Arrhythmogenic right ventricular cardiomyopathy and fatty replacement of the right ventricular myocardium: are they different diseases? Circulation 97:1571–1580.

    PubMed  CAS  Google Scholar 

  41. Carlson M, White R, Throhman R et al. (1994) Right ventricular outflow tract ventricular tachycardia: detection of previously unrecognized anatomic abnormalities using cine magnetic resonance imaging. J Am Coll Cardiol 24:720–727.

    Article  PubMed  CAS  Google Scholar 

  42. Laissy JP, Hyafil F, Feldman JL et al. (2005) Differentiating acute myocardial infarction from myocarditis: diagnostic value of early- and delayed-perfusion cardiac MR imaging. Radiology 237:75–82.

    Article  PubMed  Google Scholar 

  43. Mahrholdt H, Goedecke C, Wagner A et al. (2004) Cardiovascular magnetic resonance assessment of human myocarditis. A comparison to histology and molecular pathology. Circulation 109:1250–1258.

    Article  PubMed  Google Scholar 

  44. Friedrich M, Strohm O, Schulz-Menger J et al. (1998) Contrast media-enhanced magnetic resonance imaging visualizes myocardial changes in the course of viral myocarditis. Circulation 97:1802–1809.

    PubMed  CAS  Google Scholar 

  45. Martin NT, Groenning AB, Dargie JH (2006) Diagnosing acute myocarditis using cardiac MRI. Eur Heart J 27(4):468.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mahmood, S., Kwok, R. (2009). Current Status of Cardiovascular MR Imaging. In: Movahed, A., Gnanasegaran, G., Buscombe, J., Hall, M. (eds) Integrating Cardiology for Nuclear Medicine Physicians. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78674-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78674-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78673-3

  • Online ISBN: 978-3-540-78674-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics