Advertisement

Location-Aware Quality of Service Measurements for Service-Level Agreements

  • Ashok Argent-Katwala
  • Jeremy Bradley
  • Allan Clark
  • Stephen Gilmore
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4912)

Abstract

We add specifications of location-aware measurements to performance models in a compositional fashion, promoting precision in performance measurement design. Using immediate actions to send control signals between measurement components we are able to obtain more accurate measurements from our stochastic models without disturbing their structure. A software tool processes both the model and the measurement specifications to give response time distributions and quantiles, an essential calculation in determining satisfaction of service-level agreements (SLAs).

Keywords

Control Message Process Algebra Measurement Component Observation Probe Service Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Meyer, J.F.: On evaluating the performability of degradable computing systems. IEEE Transactions on Computers C-29(8), 720–731 (1980)CrossRefGoogle Scholar
  2. 2.
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)Google Scholar
  3. 3.
    Bernardo, M., Gorrieri, R.: A tutorial on EMPA: A theory of concurrent processes with non-determinism, priorities, probabilities and time. Theoretical Computer Science 202, 1–54 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Priami, C.: Stochastic π-Calculus. The Computer Journal 38(6), 578–589 (1995)CrossRefGoogle Scholar
  5. 5.
    Strulo, B., Harrison, P.G.: Spades – A process algebra for discrete event simulation. J. Logic Computation 10(1), 3–42 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Argent-Katwala, A., Bradley, J.T., Dingle, N.J.: Expressing performance requirements using regular expressions to specify stochastic probes over process algebra models. In: Proceedings of the Fourth International Workshop on Software and Performance, Redwood Shores, California, USA, pp. 49–58. ACM Press, New York (2004)Google Scholar
  7. 7.
    AESOP performance modelling group: PerformDB performance model database, Imperial College London (2007), http://performdb.org
  8. 8.
    Marsan, M.A., Conte, G., Balbo, G.: A class of generalised stochastic Petri nets for the performance evaluation of multiprocessor systems. ACM Transactions on Computer Systems 2(2), 93–122 (1984)CrossRefGoogle Scholar
  9. 9.
    D’Argenio, P.R., Hermanns, H., Katoen, J.-P., Klaren, R.: MoDeST – A modelling and description language for stochastic timed systems. In: de Luca, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, pp. 87–104. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Bradley, J.T.: Semi-Markov PEPA: Modelling with generally distributed actions. International Journal of Simulation 6(3-4), 43–51 (2005)Google Scholar
  11. 11.
    Argent-Katwala, A., Bradley, J.T.: Functional performance specification with stochastic probes. In: Horváth, A., Telek, M. (eds.) EPEW 2006. LNCS, vol. 4054, pp. 31–46. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Gilmore, S., Hillston, J., Ribaudo, M.: An efficient algorithm for aggregating PEPA models. IEEE Transactions on Software Engineering 27(5), 449–464 (2001)CrossRefGoogle Scholar
  14. 14.
    Kemeny, J., Snell, J.: Finite Markov Chains. Van Nostrand (1960)Google Scholar
  15. 15.
    Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with Generalized Stochastic Petri Nets. John Wiley, Chichester (1995)zbMATHGoogle Scholar
  16. 16.
    Deavours, D.D., Sanders, W.H.: An efficient well-specified check. In: Proceedings of PNPM 1999: the 8th International Workshop on Petri Nets and Performance Models, Zaragoza, Spain, IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  17. 17.
    Bradley, J., Dingle, N., Gilmore, S., Knottenbelt, W.: Derivation of passage-time densities in PEPA models using ipc: The Imperial PEPA Compiler. In: Kotsis, G. (ed.) Proceedings of the 11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunications Systems, University of Central Florida, October 2003, pp. 344–351. IEEE Computer Society Press, Los Alamitos (2003)CrossRefGoogle Scholar
  18. 18.
    Knottenbelt, W.: Generalised Markovian analysis of timed transition systems. Master’s thesis, University of Cape Town (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ashok Argent-Katwala
    • 1
  • Jeremy Bradley
    • 1
  • Allan Clark
    • 2
  • Stephen Gilmore
    • 2
  1. 1.Department of ComputingImperial CollegeLondon 
  2. 2.LFCS, School of InformaticsUniversity of Edinburgh 

Personalised recommendations