Skip to main content

Probabilistic Logic Learning from Haplotype Data

  • Chapter
Probabilistic Inductive Logic Programming

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4911))

  • 1444 Accesses

Abstract

The analysis of haplotype data of human populations has received much attention recently. For instance, problems such as Haplotype Reconstruction are important intermediate steps in gene association studies, which seek to uncover the genetic basis of complex diseases. In this chapter, we explore the application of probabilistic logic learning techniques to haplotype data. More specifically, a new haplotype reconstrcution technique based on Logical Hidden Markov Models is presented and experimentally compared against other state-of-the-art haplotyping systems. Furthermore, we explore approaches for combining haplotype reconstructions from different sources, which can increase accuracy and robustness of reconstruction estimates. Finally, techniques for discovering the structure in haplotype data at the level of haplotypes and population are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI/MIT Press (1996)

    Google Scholar 

  2. Daly, M.J., Rioux, J.D., Schaffner, S.F., Hudson, T.J., Lander, E.S.: High-Resolution Haplotype Structure in the Human Genome. Nature Genetics 29, 229–232 (2001)

    Article  Google Scholar 

  3. Eronen, L., Geerts, F., Toivonen, H.: A Markov Chain Approach to Reconstruction of Long Haplotypes. In: Altman, R.B., Dunker, A.K., Hunter, L., Jung, T.A., Klein, T.E. (eds.) Biocomputing 2004, Proceedings of the Pacific Symposium, Hawaii, USA, 6-10 January 2004, pp. 104–115. World Scientific, Singapore (2004)

    Google Scholar 

  4. Eronen, L., Geerts, F., Toivonen, H.: HaploRec: efficient and accurate large-scale reconstruction of haplotypes. BMC Bioinformatics 7, 542 (2006)

    Article  Google Scholar 

  5. Flum, J., Grohe, M.: Parameterized Complexity Theory. In: EATCS Texts in Theoretical Computer Science, Springer, Heidelberg (2006)

    Google Scholar 

  6. Gionis, A., Mannila, H., Terzi, E.: Clustered segmentations. In: 3rd Workshop on Mining Temporal and Sequential Data (TDM) (2004)

    Google Scholar 

  7. Gabriel, S.B., Schaffner, S.F., Nguyen, H., Moore, J.M., Roy, J., Blumenstiel, B., Higgins, J., DeFelice, M., Lochner, A., Faggart, M., Liu-Cordero, S.N., Rotimi, C., Adeyemo, A., Cooper, R., Ward, R., Lander, E.S., Daly, M.J., Altshuler, D.: The structure of haplotype blocks in the human genome. Science 296(5576), 2225–2229 (2002)

    Article  Google Scholar 

  8. Halldórsson, B.V., Bafna, V., Edwards, N., Lippert, R., Yooseph, S., Istrail, S.: A survey of computational methods for determining haplotypes. In: Istrail, S., Waterman, M.S., Clark, A. (eds.) DIMACS/RECOMB Satellite Workshop 2002. LNCS (LNBI), vol. 2983, pp. 26–47. Springer, Heidelberg (2004)

    Google Scholar 

  9. Higasa, K., Miyatake, K., Kukita, Y., Tahira, T., Hayashi, K.: D-HaploDB: A database of definitive haplotypes determined by genotyping complete hydatidiform mole samples. Nucleic Acids Research 35, D685–D689 (2007)

    Article  Google Scholar 

  10. Hudson, R.R.: Generating samples under a wright-fisher neutral model of genetic variation. Bioinformatics 18, 337–338 (2002)

    Article  Google Scholar 

  11. Kersting, K., De Raedt, L., Raiko, T.: Logical hidden markov models. Journal for Artificial Intelligence Research 25, 425–456 (2006)

    Google Scholar 

  12. Koivisto, M., Kivioja, T., Mannila, H., Rastas, P., Ukkonen, E.: Hidden markov modelling techniques for haplotype analysis. In: Ben-David, S., Case, J., Maruoka, A. (eds.) ALT 2004. LNCS (LNAI), vol. 3244, pp. 37–52. Springer, Heidelberg (2004)

    Google Scholar 

  13. Kääriäinen, M., Landwehr, N.: Sampsa Lappalainen, and Taneli Mielikäinen. Combining haplotypers. Technical Report C-2007-57, Department of Computer Science, University of Helsinki (2007)

    Google Scholar 

  14. Kimmel, G., Shamir, R.: A Block-Free Hidden Markov Model for Genotypes and Its Applications to Disease Association. Journal of Computational Biology 12(10), 1243–1259 (2005)

    Article  Google Scholar 

  15. Landwehr, N., Mielikäinen, T., Eronen, L., Toivonen, H., Mannila, H.: Constrained hidden markov models for population-based haplotyping. BMC Bioinformatics (to appear, 2007)

    Google Scholar 

  16. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)

    Article  Google Scholar 

  17. Rastas, P., Koivisto, M., Mannila, H., Ukkonen, E.: A hidden markov technique for haplotype reconstruction. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 140–151. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Savage, C.: A survey of combinatorial gray codes. SIAM Review 39(4), 605–629 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Stephens, M., Scheet, P.: Accounting for Decay of Linkage Disequilibrium in Haplotype Inference and Missing-Data Imputation. The American Journal of Human Genetics 76, 449–462 (2005)

    Article  Google Scholar 

  20. Scheet, P., Stephens, M.: A Fast and Flexible Statistical Model for Large-Scale Population Genotype Data: Applications to Inferring Missing Genotypes and Haplotypic Phase. The American Journal of Human Genetics 78, 629–644 (2006)

    Article  Google Scholar 

  21. Salem, R., Wessel, J., Schork, N.: A comprehensive literature review of haplotyping software and methods for use with unrelated individuals. Human Genomics 2, 39–66 (2005)

    Google Scholar 

  22. The International HapMap Consortium. A Haplotype Map of the Human Genome. Nature, 437, 1299–1320 (2005)

    Google Scholar 

  23. Thompson Jr., J.N., Hellack, J.J., Braver, G., Durica, D.S.: Primer of Genetic Analysis: A Problems Approach, 2nd edn. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  24. Wang, W.Y.S., Barratt, B.J., Clayton, D.G., Todd, J.A.: Genome-wide association studies: Theoretical and practical concerns. Nature Reviews Genetics 6, 109–118 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Luc De Raedt Paolo Frasconi Kristian Kersting Stephen Muggleton

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Landwehr, N., Mielikäinen, T. (2008). Probabilistic Logic Learning from Haplotype Data. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds) Probabilistic Inductive Logic Programming. Lecture Notes in Computer Science(), vol 4911. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78652-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78652-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78651-1

  • Online ISBN: 978-3-540-78652-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics