Skip to main content

3D Blood Flow Reconstruction from 2D Angiograms

  • Conference paper
Bildverarbeitung für die Medizin 2008

Part of the book series: Informatik aktuell ((INFORMAT))

Abstract

A method for 3-d blood flow reconstruction is presented. Given a 3-d volume of a vessel tree and a 2-d sequence of angiograms, the propagation information can be back-projected into the 3-d vessel volume. In case of overlapping vessel segments in the 2-d projections, ambiguous back-projection results are obtained. We introduce a probabilistic blood flow model for solving these ambiguities. Based on the last estimated state and known system dynamics the next state is predicted, and predictions are judged by the back-projected information. The discrete realization is done with a particle filter. Experiments prove the efficiency of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schmitt H, Grass M, Rasche V, et al. An X-ray-based method for the determination of the contrast agent propagation in 3-d vessel structures. IEEE Trans Med Imaging. 2002;21(3):251–62.

    Article  Google Scholar 

  2. Hüllmandel T. Räumliche und zeitliche Rekonstruktion in der Neuroradiologie [Diplomarbeit]. Universität Würzburg; 2004.

    Google Scholar 

  3. Ford MD, Stuhne GR, Nikolov HN, et al. Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics. IEEE Trans Med Imaging. 2005 12;24(12):1586–92.

    Article  Google Scholar 

  4. Arulampalam S, Maskell S, Gordon N, et al. A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process. 2002;50(2):174–88.

    Article  Google Scholar 

  5. Doucet A, de Freitas N, Gordon N. Sequential Monte Carlo Methods in Practice. Springer, Berlin; 2001.

    MATH  Google Scholar 

  6. Isard M, Blake A. CONDENSATION: Conditional density propagation for visual tracking. Int J Computer Vis. 1998;29(1):5–28.

    Article  Google Scholar 

  7. Xu L. Konzipierung und Realisierung eines interaktiven Editors für Gefäßgraphen. DKFZ Heidelberg; 2005.

    Google Scholar 

  8. Kitagawa G. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J Comput Graph Stat. 1996;5(1):1–25.

    Article  MathSciNet  Google Scholar 

  9. Isard M, Blake A. A smoothing filter for Condensation. Proc ECCV. 1998;1:767–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Platzer, ES., Deinzer, F., Paulus, D., Denzler, J. (2008). 3D Blood Flow Reconstruction from 2D Angiograms. In: Tolxdorff, T., Braun, J., Deserno, T.M., Horsch, A., Handels, H., Meinzer, HP. (eds) Bildverarbeitung für die Medizin 2008. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78640-5_58

Download citation

Publish with us

Policies and ethics