Skip to main content

Comparison of Different Metrics for Appearance-Model-Based 2D/3D-registration with X-ray Images

  • Conference paper
Bildverarbeitung für die Medizin 2008

Abstract

The general idea of the presented work is to overcome known problems with segmentation and analysis of 2D radiographs by registering a 3D appearance-model. Therefore this paper introduces a novel method to register 2D x-rays with 3D appearance-models by optimizing the appearance and pose of the model until a virtual radiograph of the generated model-instance optimally fits the investigated x-ray. The approach was tested on a sample set of 15 human femur specimen using different metrics and optimization techniques to investigate the impact on the resulting implicit 2D-segmentation. The first promising results are presented and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maintz JBA, Viergever MA. A survey of medical image registration. Med Image Anal. 1998;2(1):1–36.

    Article  Google Scholar 

  2. Birkfellner W, Seemann R, Figl M, et al. Wobbled splatting: A fast perspective volume rendering method for simulation of x-ray images from CT. Comp Prog Med Biol. 2003;50:N73–N84.

    Article  Google Scholar 

  3. Lamecker H, Wenckebach T, Hege H. Atlas-based 3D-shape reconstruction from x-ray images. Proc ICPR. 2006; p. 371–4.

    Google Scholar 

  4. Fritscher KD, Gruenerbl A, Schubert R. 3D image segmentation using combined shape-intensity prior models. J Comp Assist Rad Surg. 2007;1:341–50.

    Article  Google Scholar 

  5. Pluim JPW, Maintz JBA, Viergever MA. Mutual information based registration of medical images: a survey. IEEE Trans Med Imag. 2003;22:986–1004.

    Article  Google Scholar 

  6. Press WH, Flannery BP, Teukolsky SA, et al. Numerical Recipes in C. 2nd ed. Cambridge University Press; 2002.

    Google Scholar 

  7. Rechenberg I. Evolutionsstrategie. Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann Holzboog; 1973.

    Google Scholar 

  8. Holden M, Hill DLG, Denton ERE, et al. Voxel similarity measures for 3D serial MR brain image registration. Proc IPMI. 1999; p. 472–7.

    Google Scholar 

  9. Mattes D, Haynor DR, Vesselle H, et al. PET-CT image registration in the chest using free-form deformations. IEEE Trans Med Imag. 2003;22(1):120–8.

    Article  Google Scholar 

  10. Behiels G, Maes F, Vandermeulen D, et al. Evaluation of image features and search strategies for segmentation of bone structures in radiographs using active shape models. Med Imag Anal. 2002;6(1):47–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Steininger, P. et al. (2008). Comparison of Different Metrics for Appearance-Model-Based 2D/3D-registration with X-ray Images. In: Tolxdorff, T., Braun, J., Deserno, T.M., Horsch, A., Handels, H., Meinzer, HP. (eds) Bildverarbeitung für die Medizin 2008. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78640-5_25

Download citation

Publish with us

Policies and ethics