Skip to main content

Thermodynamic and Kinetic Approach to Ductility-Dip Cracking Resistance Improvement of Ni-base Alloy ERNiCrFe-7: Effect of Ti and Nb Additions

  • Chapter
Book cover Hot Cracking Phenomena in Welds II

Abstract

Previous research has suggested that significant improvement in ductility-dip cracking resistance of ERNiCrFe-7 weld metal can be obtained if sec-ond phase precipitation during welding is optimized with some carbide and nitride forming element additions. Therefore, a theoretical and experimen-tal work has been conducted to address the effect of Nb and Ti additions to the precipitation of second-phase particles during welding of a ERNiCrFe-7-like alloy. The critical precipitation temperatures, phase fractions and atomic partitioning in the microstructure were among the factors analyzed in the light of DDC resistance improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rhines FN, Wray PJ (1961) Investigation of the Intermediate Temperature Ductility Minimum in Metals. Trans. ASM 54: 117–128.

    Google Scholar 

  2. Yeniscavich W (1966) A Correlation of Ni-Cr-Fe Alloy Weld Metal Fissuring with Hot Ductility Behavior. Weld. J. 45(8): 344s–355s.

    Google Scholar 

  3. Ouchi C, Matsumoto K (1982) Hot ductility in Nb-bearing High-strength Low Alloy Steels. Trans. Iron Steel Inst. Japan 22(3): 181–189.

    CAS  Google Scholar 

  4. Mintz B, Yue S, Jonas JJ (1991) Hot Ductility of Steels and its Relationship to the Problem of Transverse Cracking During Continuous Casting. Inter. Mater. Rev. 36(5): 187–217.

    CAS  Google Scholar 

  5. Duvall DS, Owczarski WA (1967) Further Heat-Affected-Zone Studies in Heat-Resistant Nickel Alloys. Weld. J. 46(9): 423s–432s.

    CAS  Google Scholar 

  6. Collins MG, Lippold JC (2003) An Investigation of ductility Dip Cracking in Nickel-Based Filler Materials – Part I. Weld. J. 82(10): 288s–295s.

    Google Scholar 

  7. Collins MG, Ramirez AJ, Lippold JC (2003) An Investigation of Ductility-Dip Cracking in Nickel Based Weld Metals – Part II. Weld. J. 82(12): 348s–354s.

    Google Scholar 

  8. Collins MG, Lippold JC (2003) An Investigation of Ductility-Dip Cracking in Nickel Based Weld Matels – Part II. Weld. J. 82(12): 348s–354s.

    Google Scholar 

  9. Ramirez AJ, Lippold JC (2004) High Temperature Behavior of Ni-base Weld Metal – Part I. Ductility and Microestructural Characterization. Mater. Sci. Eng. A. 380: 259–271.

    Article  Google Scholar 

  10. Ramirez AJ, Lippold JC (2004) High Temperature Behavior of Ni-base Weld Metal – Part II. Insight Into the Mechanism for Ductility Dip Cracking. Mater Sci. Eng. A 380: 245–258.

    Article  Google Scholar 

  11. Nishimoto K, Saida K, Okauchi H (2006) Microcracking in Multipass Weld Metal of Alloy 690 Part 1 – Microcraking Susceptibility in Reheated Weld Metal. Sci. Tech. Weld. Joining 11(4): 455–461.

    Article  Google Scholar 

  12. Nishimoto K, Saida K, Okauchi H, Ohta K (2006) Microcracking in Multipass Weld Metal of Alloy 690 Part 1 – Microcraking Mechanism in Reheated Weld Metal. Sci. Tech. Weld. Joining 11(4): 462–470.

    Article  Google Scholar 

  13. Capobianco TE, Hanson ME (2005) Auger Spectroscopy Results from Ductil-ity Dip Cracks Opened under Ultra-High Vacuum. In: Proc. 7th Int. Conf. on ‘Trends in Welding Research’, Pine Mountain, GA, USA, May 2005, ASM International: 767–772.

    Google Scholar 

  14. Nissley NE, Lippold JC (2003) Development of the Strain-to-Fracture Test. Weld. J. 82(12): 355s–364s.

    Google Scholar 

  15. Ramirez AJ, Sowards JW, Lippold JC (2006) Improving the Ductility-Dip Cracking Resistance of Ni-Base Alloys. J. Mat. Proc. Tech. 179: 212–218.

    Article  Google Scholar 

  16. Lippold JC, Nissley NE (2006) Further Investigations of Ductility-Dip Crack-ing in High Chromium, Ni-base Filler Metals. Document IIW-IIC-326-06: 1–10.

    Google Scholar 

  17. Nishimoto K, Saida K, Okauchi H, Otha K (2006) Microcracking in Multipass Weld Metal of Alloy 690 Part 1 – Prevention of Microcraking in Reheated Weld Metal by Addition of La to Filler Metal. Sci. Tech. Weld. Joining 11(4): 471–479.

    Article  Google Scholar 

  18. Garzon CM, Ramirez AJ (2007) Second Phase Precipitation in As-Welded Microstructures of ERNiCrFe-7 Ni Alloy Modified with Ti and Nb Additions. Submitted to Mater. Sci. Eng. A.

    Google Scholar 

  19. Garzon CM, Ramirez AJ (2007) Kinetic phase diagrams for assessing second-phase precipitation during welding a Ni-30Cr-10Fe alloy modified with Ti and Nb additions. Submitted to Scripta Materialia.

    Google Scholar 

  20. Andersson JO, Ågren J (1992) Models for numerical treatment of. multicom-ponent diffusion in simple phases. J. Appl. Phys. 72: 1350–1355.

    Article  CAS  Google Scholar 

  21. Borgenstam A, Engström A, Hoglund L, Ågren J (2000) J. Phase Equilibria 21: 269–280

    Article  Google Scholar 

  22. Andersson JO, Helander T, Höglund L, Shi P, Sundman B (2002) Thermo-Calc&DICTRA, Computational Tools for Materials Science. Calphad 26: 273–312

    Article  Google Scholar 

  23. Christensen AN (1978) Acta Chem. Scand. Ser. A 32(1): 89–90.

    Article  Google Scholar 

  24. Huang X, Zhang Y, Liu Y, Hu Z (1997) Effect of Small Amount of nitroten on Carbide Characteristics in unidireccional Ni-Base Superalloy, Metall. Mater. Trans. A 28A(10): 2143–2147.

    Article  Google Scholar 

  25. Craven AJ, He K, Garvie LAJ, Baker TN (2000) Complex Heterogeneous Precipitation in Titanium–Niobium Microalloyed Al-killed HSLA Steels―1. (Ti,Nb)(C,N) Particles, Acta Mater. 48: 3857–3868.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ramirez, A., Garzón, C. (2008). Thermodynamic and Kinetic Approach to Ductility-Dip Cracking Resistance Improvement of Ni-base Alloy ERNiCrFe-7: Effect of Ti and Nb Additions. In: Böllinghaus, T., Herold, H., Cross, C.E., Lippold, J.C. (eds) Hot Cracking Phenomena in Welds II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78628-3_22

Download citation

Publish with us

Policies and ethics