Advertisement

Lossless Compression for Space Imagery in a Dynamically Reconfigurable Architecture

  • Xiaolin Chen
  • C. Nishan Canagarajah
  • Raffaele Vitulli
  • Jose L. Nunez-Yanez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4943)

Abstract

This paper presents a novel dynamically reconfigurable hardware architecture for lossless compression and its optimization for space imagery. The proposed system makes use of reconfiguration to support optimal modeling strategies adaptively for data with different dimensions. The advantage of the proposed system is the efficient combination of different compression functions. For image data, we propose a new multi-mode image model which can detect the local features of the image and use different modes to encode regions with different features. Experimental results show that our system improves compression ratios of space image while maintaining low complexity and high throughput.

Keywords

Multispectral Image Probability Estimator Compression Function Lossless Compression Lossless Image Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Katz, D.S., Some, R.R.: NASA Advances Robotic Space Exploration. Computer 36, 52–61 (2003)CrossRefGoogle Scholar
  2. 2.
    Vitulli, R.: PRDC: An ASIC Device for Lossless Data Compression Implementing the Rice Algorithm. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, IGARSS, pp. 317–320 (2004)Google Scholar
  3. 3.
    Klimesh, M., Stanton, V., Watola, D.: Hardware Implementation of a Lossless Image Compression Algorithm Using a Field Programmable Gate Array. TMO Progress Report 42–144, Jet Propulsion Laboratory, California, US (2001)Google Scholar
  4. 4.
    Weinberger, M.J., Seroussi, G., Sapiro, G.: LOCO-I: A Low Complexity, Context-based, Lossless Image Compression Algorithm. In: Proceedings of Data Compression Conference, pp. 140–149 (1996)Google Scholar
  5. 5.
    Bloom, C.: Solving the Problems of Context Modeling (1998), http://www.cbloom.com/papers/index.html
  6. 6.
    Wu, X., Memon, N.: Context-based, Adaptive, Lossless Image Coding. IEEE Trans. Comm. 45, 437–444 (1997)CrossRefGoogle Scholar
  7. 7.
    Nunez-Yanez, J.L., Chouliaras, V.A.: A Configurable Statistical Lossless Compression Core Based on Variable Order Markov Modeling and Arithmetic Coding. IEEE Trans. Comp. 54, 1345–1359 (2005)CrossRefGoogle Scholar
  8. 8.
    Taubman, D.S., Marcellin, M.W.: JPEG2000 Image Compression Fundamentals, Standards and Practice. Kluwer, Dordrecht (2002)Google Scholar
  9. 9.
    Said, A., Pearlman, W.A.: A New Fast and Efficient Image Codec Based on Set Partitioning in Hierarchical Trees. IEEE Trans. Circuits Syst. Video Technol. 6, 243–250 (1996)CrossRefGoogle Scholar
  10. 10.
    Kiely, A., Klimesh, M.: The ICER Progressive Wavelet Image Compressor. IPN Progress Report 42-155, 1-46 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Xiaolin Chen
    • 1
  • C. Nishan Canagarajah
    • 1
  • Raffaele Vitulli
    • 2
  • Jose L. Nunez-Yanez
    • 1
  1. 1.Department of Electrical and Electronic EngineeringUniversity of BristolUK
  2. 2.On-Board Payload Data Processing SectionEuropean Space Agency (ESA)The Netherlands

Personalised recommendations