Advertisement

A Framework for the Automatic Generation of Instruction-Set Extensions for Reconfigurable Architectures

  • Carlo Galuzzi
  • Koen Bertels
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4943)

Abstract

In this paper we present a framework for the automatic identification and selection of convex MIMO instruction-set extensions for reconfigurable architecture. The framework partitions the analysis of the problem into phases of different computational complexity and it generates instruction-set extensions of different granularity. The framework is retargetable and additional clustering policies can be added with just small modification on the design.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vassiliadis: The molen polymorphic processor. IEEE Trans. on Comp. 53(11) (2004)Google Scholar
  2. 2.
    Galuzzi: The Instruction-Set Extension Problem: A Survey. In: ARC 2008 (2008)Google Scholar
  3. 3.
    Alippi: A dag-based design approach for reconfigurable vliw processors. In: DATE 1999 (1999)Google Scholar
  4. 4.
    Galuzzi: A linear complexity algorithm for the generation of multiple input single output instructions of variable size. In: SAMOS VIIGoogle Scholar
  5. 5.
    Galuzzi: Automatic selection of application-specific instruction-set extensions. In: CODES+ISSS 2006 (2006)Google Scholar
  6. 6.
    Galuzzi: A linear complexity algorithm for the automatic generation of convex multiple input multiple output instructions. In: Inter. J. of Elec. (2008) (to appear)Google Scholar
  7. 7.
    Galuzzi: The spiral search: A linear complexity algorithm for the generation of convex multiple input multiple output instruction-set extensions. In: ICFPT 2007 (2007)Google Scholar
  8. 8.
    Bonzini: A retargetable framework for automated discovery of custom instructions. In: ASAP 2007 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Carlo Galuzzi
    • 1
  • Koen Bertels
    • 1
  1. 1.Delft University of TechnologyThe Netherlands

Personalised recommendations