Exploring Reconfigurable Architectures for Binomial-Tree Pricing Models

  • Qiwei Jin
  • David B. Thomas
  • Wayne Luk
  • Benjamin Cope
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4943)


This paper explores the application of reconfigurable hardware to the acceleration of financial computations involving binomial-tree pricing models. A parallel pipelined architecture capable of computing multiple binomial trees is presented, which can deal with concurrent requests for option valuations. The architecture is mapped into an xc4vsx55 FPGA. Our results show that an FPGA implementation with fixed-point arithmetic at 87.4MHz can run over 250 times faster than a Core2 Duo processor at 2.2GHz, and more than two times faster than an nVidia Geforce 7900GTX processor with 24 pipelines at 650MHz.


Asset Price Option Price Price Model American Option Strike Price 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Black, F., Scholes, M.S.: The pricing of options and corporate liabilities. Journal of Political Economics 81, 637–659 (1973)CrossRefGoogle Scholar
  2. 2.
  3. 3.
  4. 4.
    Constantinides, G.A.: Word-length optimization for differentiable nonlinear systems. ACM Trans. on Design Automation of Elect. Sys. 11(1), 26–43 (2006)CrossRefGoogle Scholar
  5. 5.
    Hull, J.C.: Options, Futures and Other Derivatives, 6th edn. Prentice-Hall, Englewood Cliffs (2005)Google Scholar
  6. 6.
    Morris, G.W., Aubury, M.: Design space exploration of the European option benchmark using hyperstreams. In: Proc. Int. Conf. on Field Programmable Logic and Applications, IEEE, Los Alamitos (2007)Google Scholar
  7. 7.
    Thomas, D.B., Bower, J.A., Luk, W.: Automatic generation and optimisation of reconfigurable financial Monte-Carlo simulations. In: IEEE Int. Conf. on Application-Specific Systems, Architectures and Processors (2007)Google Scholar
  8. 8.
    Weaver, N., Markovskiy, Y., Patel, Y., Wawrzynek, J.: Post-placement C-slow retiming for the Xilinx Virtex FPGA. In: Proc. Int. Symp. on FPGAs, pp. 185–194. ACM Press, New York (2003)Google Scholar
  9. 9.
    Xilinx Inc. Virtex 4 FPGA handbook (2004)Google Scholar
  10. 10.
    Xilinx Inc. Floating-point operator v3.0 manual (2006)Google Scholar
  11. 11.
    Wilton, S.W., et al.: The impact of pipelining on energy per operation in Field-Programmable Gate Arrays. In: Becker, J., Platzner, M., Vernalde, S. (eds.) FPL 2004. LNCS, vol. 3203, pp. 719–728. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Zhang, G.L., et al.: Reconfigurable acceleration for Monte Carlo based financial simulation. In: Proc. Int. Conf. on Field-Programmable Technology, pp. 215–224. IEEE, Los Alamitos (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Qiwei Jin
    • 1
  • David B. Thomas
    • 1
  • Wayne Luk
    • 1
  • Benjamin Cope
    • 2
  1. 1.Department of ComputingImperial CollegeLondonUK
  2. 2.Circuits and Systems Group, Department of Electrical and Electronic EngineeringImperial CollegeLondonUK

Personalised recommendations