Advertisement

ARISE Machines: Extending Processors with Hybrid Accelerators

  • Nikolaos Vassiliadis
  • George Theodoridis
  • Spiridon Nikolaidis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4943)

Abstract

ARISE introduces a systematic approach to extend once a processor to support thereafter the coupling of an arbitrary number of Custom Computing Units (CCUs). A CCU, hardwired or reconfigurable, can be utilized in a hybrid, tight and/or loose, model of computation. By selecting the appropriate model for each part of the application, the complete application space can be considered for acceleration, resulting to significant performance improvements. To support these features ARISE proposes: i) a machine organization, ii) a set of Instruction Set Extensions (ISEs), and iii) a micro-architecture. To evaluate our proposal, a MIPS processor is extended with the ARISE infrastructure and implemented on an FPGA. Results show that the ARISE infrastructure can easily fit into the timing model of the processor. A set of benchmarks is mapped on the evaluation machine and it is proved that exploiting the hybrid model of computation, performance improvements of up to 68% are achieved compared to the case when only one model is supported. This results to significant application speedups from 2.4x up to 4.8x.

Keywords

reconfigurable instruction set processor coprocessor custom unit FPGA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hauser, J.R., Wawrzynek, J.: Garp: A MIPS Processor with a Reconfigurable Coprocessor. In: FCCM, pp. 12–21 (1997)Google Scholar
  2. 2.
    Goldstein, S.C., et al.: PipeRench: A Coprocessor for Streaming Multimedia Acceleration. In: ISCA, pp. 28–39 (1999)Google Scholar
  3. 3.
    Singh, H., et al.: MorphoSys: an Integrated Reconfigurable System for Data Parallel and Computation-Intensive Applications. IEEE Trans. on Comp. 465–481 (2000)Google Scholar
  4. 4.
    Vassiliadis, S., et al.: The Molen Polymorphic Processor. IEEE Trans. on Comp. 53(11), 1363–1375 (2004)CrossRefGoogle Scholar
  5. 5.
    Clark, N., et al.: An Architecture Framework for Transparent Instruction Set Customization in Embedded Processors. In: ISCA, pp. 272–283 (2005)Google Scholar
  6. 6.
    Vassiliadis, N., et al.: A RISC architecture extended by an efficient tightly coupled reconfigurable unit. Int. Journal of Electronics 93(6), 421–438 (2006)CrossRefGoogle Scholar
  7. 7.
    Lodi, A., et al.: A VLIW Processor with Reconfigurable Instruction Set for Embedded Applications. IEEE Journal of Solid-State Circuits 38(11), 1876–1886 (2003)CrossRefGoogle Scholar
  8. 8.
    Hauck, S., et al.: The Chimaera Reconfigurable Functional Unit. In: FCCM, pp. 87–96 (1997)Google Scholar
  9. 9.
    The ArchC Website: http://www.archc.org
  10. 10.
    Guthausch, M.R., et al.: Mibench: A free, commercially representative embedded benchmark suite. In: IEEE 4th Annual Workshop on Workload Characterization, pp. 3–14 (2001)Google Scholar
  11. 11.
    Scott, J., et al.: Designing the Low- Power MoCORE Architecture. In: Int’l. Symp. on Comp. Arch. Power Driven Microarch. Workshop, pp. 145–150 (1998)Google Scholar
  12. 12.
    Alippi, C., et al.: A DAG Based Design Approach for Reconfigurable VLIW Processors. In: IEEE DATE, pp. 778–779 (1999)Google Scholar
  13. 13.
  14. 14.
    Vassiliadis, N., et al.: The ARISE Reconfigurable Instruction Set Extensions Framework. In: Proc. of IC-SAMOS, pp. 153–160 (2007)Google Scholar
  15. 15.
    Gupta, S., et al.: SPARK: A High-Level Synthesis Framework for Applying Parallelizing Compiler Transformations. In: Int. Conf. on VLSI Design, pp. 461–466 (2003)Google Scholar
  16. 16.
    Goodwin, D., Petkov, D.: Automatic generation of application specific processors. In: Proc. of CASES, pp. 137–147 (2003)Google Scholar
  17. 17.
    Atasu, K., et al.: Automatic application-specific instruction-set extensions under micro-architectural constraints. In: Proc. of DAC, pp. 256–261 (2003)Google Scholar
  18. 18.
    Sun, F., et al.: Automatic generation of application specific processors. IEEE TCAD 26(11), 2035–2045 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Nikolaos Vassiliadis
    • 1
  • George Theodoridis
    • 1
  • Spiridon Nikolaidis
    • 1
  1. 1.Electronics and Computer Section, Physics DepartmentAristotle University of ThessalonikiGreece

Personalised recommendations