Skip to main content

Real-Time Neural Networks Application of Micro-Electroforming for Different Geometry Forms

  • Conference paper
Agent and Multi-Agent Systems: Technologies and Applications (KES-AMSTA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4953))

  • 1592 Accesses

Abstract

In this study, the approach of using neural networks is implemented for demonstrating its effectiveness in the real-time application of microelectroform on the different geometry forms. Three back-propagation neural networks are established via the training process with the numerical database to predict the distributions of Sh/Shmax, ACf/Cfmax and I/Imax. Comparisons of the predictions with the test target vectors indicate that the averaged root-meansquared errors from three back-propagation neural networks are well within 4.15 agent technology. Then, to fabricate the microstructure of higher surface accurate, higher hardness, lower residual stress and can be duplicated perfectly. Nevertheless, the instant knowledge of micro-electrforming characteristics is practically needed for many industrial agents technology applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hertz, J., Krogh, A., Palmer, R.G.: Introduction to the Theory of Neural Computation. Addison-Wesley, New York (1991)

    Google Scholar 

  2. Demuth, H., Beale, M.: Neural Network Toolbox User’s Guidance. The Math Works Inc., Natick, Massachusetts (1993)

    Google Scholar 

  3. Yang, H., Kang, S.W.: Improvement of Thickness Uniformity in Nickel Electroforming for the LIGA Process. J. Machine Tools and Manufacture 40, 1065–1072 (2000)

    Article  Google Scholar 

  4. Zeller, R.L., Lsndau, U.: Electrochemically Active Surface Area. Voltammetric Charge Correlation for Ruthenium and Iridium Dioxide Electrodes. J. Electrochem. 138(4), 489–494 (2001)

    Google Scholar 

  5. Chan, K.C., Tan, H.J.: Numerical Analysis of an Inside-out Tube Inversion Process. J. of Materials Processing Technology 66, 130–136 (1997)

    Article  Google Scholar 

  6. Lee, S.L., Lee, Y.F., Chang, M.H., Lin, J.C.: Pulse Plating Effects During Ni-W Electrode position. Corrosion Prevention & Control, 71-76 (1999)

    Google Scholar 

  7. Yin, K.M., Jan, S.L., Lee, C.C.: Current Pulse with Reverse Plating of Nickel-Iron Alloys in a Sulphate Bath. Surface and Coatings Technology 88, 219–225 (1996)

    Article  Google Scholar 

  8. Andricacos, P.C., Tabib, J., Romankiw, L.T.: Stripping Voltammeter of Nickel-Iron Film Electrodeposited on Platinum Using a Rotating Ring-Disk Electrode. J. Electrochem. 135(5), 1172–1174 (1988)

    Article  Google Scholar 

  9. Yamasaki, T., Schlobmacher, P., Ehrlich, K., Ogino, Y.: Formation of Amorphous Electrodeposited Ni-W Alloys and Their Nanocrystallization. Nanostructured Materials 10(3), 375–388 (1998)

    Article  Google Scholar 

  10. Gould, R.D., Lopez, M.G.: Electrical Conductivity and Dynamics of Electroforming in Al-SiOx-Al Thin Film Sandwich Structure. Thin Solid Films 433, 315–320 (2003)

    Article  Google Scholar 

  11. Hessami, S., Tobias, C.W.: A Mathematical Model for Anomalous Co deposition of Nickel-Iron on a Rotating Disk Electrode. J. Electrochem. 136, 3611–3616 (1989)

    Article  Google Scholar 

  12. Pesco, A.M., Cheh, H.Y.: The Current Distribution within Plated Through-Holes: II. The Effect of Periodic Electrolysis. J. Electrochem. 136(2), 408–414 (1989)

    Article  Google Scholar 

  13. Kondo, K., Fukui, K., Uno, K., Shinohara, K.: Shape Evolution of Electrodeposited Copper Bumps. J. Electrochem. 143(6), 1880–1886 (1996)

    Article  Google Scholar 

  14. Georgiadou, M.: Modeling Current Density Distribution in Electrochemical Systems. Electrochemical Acta, 48 (2003) 4089-4095.

    Google Scholar 

  15. Duchanoy, C., Lapicque, F.: Current Distributions on Patterned Electrodes in Laminar Flow. Chemical Engineering Science 55, 1115–1126 (2000)

    Article  Google Scholar 

  16. Beck, U., Smith, D.T., Reiners, G., Dapkunas, S.J.: Mechanical Properties of SiO2 and Si3N4 Coatings: A BAM/NIST Co-Operative Project. Thin Solid Films 332, 164–171 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ngoc Thanh Nguyen Geun Sik Jo Robert J. Howlett Lakhmi C. Jain

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shiah, SW., Chang, PY., Heh, TY., Lin, PH. (2008). Real-Time Neural Networks Application of Micro-Electroforming for Different Geometry Forms. In: Nguyen, N.T., Jo, G.S., Howlett, R.J., Jain, L.C. (eds) Agent and Multi-Agent Systems: Technologies and Applications. KES-AMSTA 2008. Lecture Notes in Computer Science(), vol 4953. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78582-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78582-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78581-1

  • Online ISBN: 978-3-540-78582-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics