Skip to main content

Introduction to Image Reconstruction

  • Chapter

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1943))

The problem of reconstructing images from measurements at the boundary of a domain belong to the class of inverse problems. In practice, these measurements are incomplete and inaccurate leading to ill-posed problems. This means that ‘exact’ reconstructions are usually not possible. In this Introduction the reader will find some applications in which the main ideas about stability and resolution in image reconstruction are discussed. We will see that although different applications or imaging modalities work under different physical principles and map different physical parameters, they all share the same mathematical foundations and the tools used to create the images have a great deal in common. Current imaging problems deal with understanding the trade off between data size, the quality of the image and the computational tools used to create the image. In many cases, these tools represent the performance bottleneck due to the high operational count and the memory cost.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anagnostopoulos KA and Charalambopoulos A 2006 The linear sampling method for the transmission problem in two-dimensional anisotropic elasticity Inverse problems 22 553–577

    Article  MATH  MathSciNet  Google Scholar 

  2. Bonnet M and Constantinescu A 2005 Inverse problems in elasticity Inverse problems 21 R1-R50

    Article  MATH  MathSciNet  Google Scholar 

  3. Burger M, Hackl B and Ring W 2004 Incorporating topological derivatives into level set methods J. Comp. Phys. 194 344–362

    Article  MATH  MathSciNet  Google Scholar 

  4. Carpio A and Rapun ML, Solving inhomogeneous inverse problems by topological derivative methods, submitted, 2007

    Google Scholar 

  5. Carpio A and Rapun ML, Shape reconstruction in anisotropic elastic media. In preparation

    Google Scholar 

  6. Chandler GA and Sloan IH 1990. Spline qualocation methods for boundary integral equations. Numer. Math. 58, 537–567

    Article  MATH  MathSciNet  Google Scholar 

  7. Charalambopoulos A 2002 On the interior transmission problem in nondissipative, homogeneous, anisotropic elasticity J. Elast. 67 149–170

    Article  MATH  MathSciNet  Google Scholar 

  8. Colton D 1984 The inverse scattering problem for time-harmonic acoustic waves, SIAM Review 26 323–350.

    Article  MATH  MathSciNet  Google Scholar 

  9. Colton D, Gieberman K and Monk P 2000 A regularized sampling method for solving three dimensional inverse scattering problems SIAM J. Sci. Comput. 21 2316–2330

    Article  MATH  MathSciNet  Google Scholar 

  10. Colton D and Kress R 1983 Integral equation methods in scattering theory John Wiley & Sons. New York.

    MATH  Google Scholar 

  11. Colton D and Kress R 1992 Inverse acoustic and electromagnetic scattering theory Springer Berlin.

    MATH  Google Scholar 

  12. Colton D and Kirsch A 1996 A simple method for solving inverse scattering problems in the resonance region Inverse problems 12 383–393

    Article  MATH  MathSciNet  Google Scholar 

  13. Costabel M and Stephan E 1985 A direct boundary integral equation method for transmission problems J. Math. Anal. Appl. 106 367–413

    Article  MATH  MathSciNet  Google Scholar 

  14. Devaney AJ 1984 Geophysical diffraction tomography, IEEE Trans. Geosci. Remote Sens. 22 3–13

    Article  Google Scholar 

  15. Domínguez V, Rapún ML and Sayas FJ 2007 Dirac delta methods for Helmholtz transmission problems. To appear in Adv. Comput. Math.

    Google Scholar 

  16. Domínguez V and Sayas FJ 2003. An asymptotic series approach to qualocation methods. J. Integral Equations Appl. 15, 113–151

    Article  MATH  MathSciNet  Google Scholar 

  17. Dorn O and Lesselier D 2006 Level set methods for inverse scattering Inverse Problems 22 R67–R131

    Article  MATH  MathSciNet  Google Scholar 

  18. Feijoo GR 2004 A new method in inverse scattering based on the topological derivative Inverse Problems 20 1819–1840

    Article  MATH  MathSciNet  Google Scholar 

  19. Feijoo GR, Oberai AA and Pinsky PM 2004 An application of shape optimization in the solution of inverse acoustic scattering problems Inverse problems 20 199–228

    Article  MATH  MathSciNet  Google Scholar 

  20. Gachechiladze A and Natroshvili D 2001 Boundary variational inequality approach in the anisotropic elasticity for the Signorini problem Georgian Math. J. 8 469-492

    MATH  MathSciNet  Google Scholar 

  21. Garreau S, Guillaume P and Masmoudi M 2001 The topological asymptotic for PDE systems: the elasticity case SIAM J. Control Optim. 39 1756–1778

    Article  MATH  MathSciNet  Google Scholar 

  22. Gegelia T and Jentsch L 1994 Potential methods in continuum mechanics Georgian Math. J. 599-640

    Google Scholar 

  23. Gerlach T and Kress R 1996 Uniqueness in inverse obstacle scattering with conductive boundary condition. Inverse Problems 12 619–625

    Article  MATH  MathSciNet  Google Scholar 

  24. Guzina BB and Bonnet M 2006 Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics Inverse Problems 22 1761–1785

    Article  MATH  MathSciNet  Google Scholar 

  25. Guzina BB, Bonnet M 2004 Topological derivative for the inverse scattering of elastic waves Q. Jl. Mech. Appl. Math. 57 161–179

    Article  MATH  MathSciNet  Google Scholar 

  26. Guzina BB, Chikichev I 2007 From imaging to material identification: A generalized concept of topological sensitivity J. Mech. Phys. Sol. 55 245–279

    Article  MATH  MathSciNet  Google Scholar 

  27. Hettlich F 1995 Fréchet derivatives in inverse obstacle scattering Inverse problems 11 371–382

    Article  MATH  MathSciNet  Google Scholar 

  28. Keller JB and Givoli D 1989 Exact non-reflecting boundary conditions J. Comput. Phys. 82 172–192

    Article  MATH  MathSciNet  Google Scholar 

  29. Kirsch A, Kress R, Monk P and Zinn A 1988 Two methods for solving the inverse acoustic scattering problem Inverse problems 4 749–770

    Article  MATH  MathSciNet  Google Scholar 

  30. Kirsch A and Kress R 1993 Uniqueness in inverse obstacle scattering Inverse Problems 9 285–299

    Article  MATH  MathSciNet  Google Scholar 

  31. Kirsch A 1993 The domain derivative and two applications in inverse scattering theory Inverse Problems 9 81–93

    Article  MATH  MathSciNet  Google Scholar 

  32. Kleinman RE and Martin P 1988 On single integral equations for the transmission problem of acoustics SIAM J. Appl. Math 48 307–325

    Article  MathSciNet  Google Scholar 

  33. Kleinman RE and van der Berg PM 1992 A modified gradient method for two dimensional problems in tomography J. Comput. Appl. Math. 42 17–35

    Article  MATH  MathSciNet  Google Scholar 

  34. Kress R and Roach GF 1978 Transmission problems for the Helmholtz equation J. Math. Phys. 19 1433–1437

    Article  MATH  MathSciNet  Google Scholar 

  35. Kupradze VD, Gegelia TG, Basheleuishvili MO and Burchauladze TV, Three dimensional problems of the mathematical theory of elasticity and thermoelasticity, North-Holland Ser. Appl. Math. Mech. 25, North-Holland, Amsterdam, 1979.

    Google Scholar 

  36. Liseno A and Pierri R 2004 Imaging of voids by means of a physical optics based shape reconstruction algorithm J. Opt. Soc. Am. A 21 968–974

    Article  Google Scholar 

  37. Litman A, Lesselier D and Santosa F 1998 Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level set Inverse problems 14 685–706

    Article  MATH  MathSciNet  Google Scholar 

  38. Masmoudi M 1987 Outils pour la conception optimale des formes Thèse d’Etat en Sciences Mathématiques, Université de Nice

    Google Scholar 

  39. Masmoudi M, Pommier J and Samet B 2005 The topological asymptotic expansion for the Maxwell equations and some applications Inverse Problems 21 547–564

    Article  MATH  MathSciNet  Google Scholar 

  40. Meddahi S and Sayas FJ 2005 Analysis of a new BEM–FEM coupling for two dimensional fluid–solid iteraction Num. Methods Part. Diff. Eq. 21 1017–1154

    Article  MATH  MathSciNet  Google Scholar 

  41. Natterer F and Wubbeling F 1995 A propagation backpropagation method for ultrasound tomography Inverse problems 11 1225-1232

    Article  MATH  MathSciNet  Google Scholar 

  42. Natroshvili D 1995 Mixed interface problems for anisotropic elastic bodies Georgian Math. J. 2 631-652

    Article  MATH  MathSciNet  Google Scholar 

  43. Natroshvili D 1996 Two-dimensional steady state oscillation problems of anisotropic elasticity Georgian Math. J. 3 239-262

    Article  MATH  MathSciNet  Google Scholar 

  44. Potthast R 1996 Fréchet differentiability of the solution to the acoustic Neumann scattering problem with respect to the domain J. Inverse Ill-Posed Problems 4 67–84

    Article  MATH  MathSciNet  Google Scholar 

  45. Rapún ML and Sayas FJ 2006 Boundary integral approximation of a heat diffusion problem in time–harmonic regime Numer. Algorithms 41 127–160

    Article  MATH  MathSciNet  Google Scholar 

  46. Rapún ML and Sayas FJ 2006 Indirect methods with Brakhage–Werner potentials for Helmholtz transmission problems. In Numerical Mathematics and advanced applications. ENUMATH 2005. Springer 1146–1154

    Google Scholar 

  47. Rapún ML and Sayas FJ 2007 Exterior Dirichlet and Neumann problems for the Hemholtz equation as limits of transmission problems. Submitted.

    Google Scholar 

  48. Rapún ML and Sayas FJ 2007 Boundary element simulation of thermal waves. Arch. Comput. Methods. Engrg 14 3–46

    Article  MATH  Google Scholar 

  49. Samet B, Amstutz S and Masmoudi M 2003 The topological asymptotic for the Helmholtz equation SIAM J. Control Optimim 42 1523–1544

    Article  MATH  MathSciNet  Google Scholar 

  50. Santosa F 1996 A level set approach for inverse problems involving obstacles ESAIM Control, Optim. Calculus Variations 1 17–33

    Article  MATH  MathSciNet  Google Scholar 

  51. Sloan IH 2000. Qualocation. J. Comput. Appl. Math. 125, 461–478

    Article  MATH  MathSciNet  Google Scholar 

  52. Sokolowski J and Zolésio JP 1992 Introduction to shape optimization. Shape sensitivity analysis (Heidelberg: Springer)

    MATH  Google Scholar 

  53. Sokowloski J and Zochowski A 1999 On the topological derivative in shape optimization SIAM J. Control Optim. 37 1251–1272

    Article  MathSciNet  Google Scholar 

  54. Torres RH and Welland GV 1993 The Helmholtz equation and transmission problems with Lipschitz interfaces Indiana Univ. Math. J. 42 1457–1485

    Article  MATH  MathSciNet  Google Scholar 

  55. von Petersdorff T 1989 Boundary integral equations for mixed Dirichlet, Neumann and transmission problems. Math. Methods Appl. Sci. 11 185–213

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moscoso, M. (2008). Introduction to Image Reconstruction. In: Bonilla, L.L. (eds) Inverse Problems and Imaging. Lecture Notes in Mathematics, vol 1943. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78547-7_1

Download citation

Publish with us

Policies and ethics