Skip to main content

Phylogenomics, Protein Family Evolution, and the Tree of Life: An Integrated Approach between Molecular Evolution and Computational Intelligence

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 122))

Summary

Information generated by genomic technologies has opened new frontiers in science by bridging a broad range of disciplines. Many tools and methods have been developed over the past several years to allow the analysis of molecular sequences. Nevertheless, the interpretation of genomic data to determine gene function and phylogenetic relationships of organisms remains challenging. Here, we focus on the application of phylogenomics (phylogenetics and genomics) to improve functional prediction of genes and gene products, to understand the evolution of protein families, and to resolve phylogenetic relationships of organisms. We point out areas that require further development, such as computational tools and methods to manipulate large and diverse data sets. The application of integrated computational and biological approaches may help to achieve a better system-based understanding of biological processes in different environments. This will help to fully access valuable information regarding the evolution of genes and genomes in the wide diversity of organisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abhiman S, Sonnhammer EL (2005) FunShift: a database of function shift analysis on protein subfamilies. Nucleic Acids Res 33: D197–200

    Article  Google Scholar 

  2. Barker FK, Cibois A, Schikler P, Feinstein J, Cracraft J (2004) Phylogeny and diversi_ cation of the largest avian radiation. Proc Natl Acad Sci U S A 101: 11040–11045

    Article  Google Scholar 

  3. Blanchette M, Kunisawa T, Sankoff D (1999) Gene order breakpoint evidence in animal mitochondrial phylogeny. J Mol Evol 49: 193–203

    Article  Google Scholar 

  4. Brenner SE (1999) Errors in genome annotation. Trends Genet 15: 132–133

    Article  Google Scholar 

  5. Brown D, Sjolander K (2006) Functional classification using phylogenomic inference. PLoS Comput Biol 2: e77

    Article  Google Scholar 

  6. Camargo MM, Nahum LA (2005) Adapting to a changing world: RAG genomics and evolution. Hum Genomics 2: 132–137

    Google Scholar 

  7. Castoe TA, Stephens T, Noonan BP, Calestani C (2007) A novel group of type I polyketide synthases (PKS) in animals and the complex phylogenomics of PKSs. Gene 392: 47–58

    Article  Google Scholar 

  8. Consortium EP (2004) The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306: 636–640

    Article  Google Scholar 

  9. Crowe TM, Bowie RC, Bloomer P, Mandiwana TG, Hedderson TAJ, Randi E, Pereira SL, Wakeling J (2006) Phylogenetics, biogeography and classification of, and character evolution in, gamebirds (Aves: Galliformes): effects of character exclusion, data partitioning and missing data. Cladistics 22: 495–532

    Article  Google Scholar 

  10. Dehal PS, Boore JL (2006) A phylogenomic gene cluster resource: the Phylogenetically Inferred Groups (PhIGs) database. BMC Bioinformatics 7: 201

    Article  Google Scholar 

  11. Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstructtion of the tree of life. Nat Rev Genet 6: 361–375

    Article  Google Scholar 

  12. Deutschbauer AM, Chivian D, Arkin AP (2006) Genomics for environmental microbiology. Curr Opin Biotechnol 17: 229–235

    Article  Google Scholar 

  13. Dunin-Horkawicz S, Feder M, Bujnicki JM (2006) Phylogenomic analysis of the GIY-YIG nuclease superfamily. BMC Genomics 7: 98

    Article  Google Scholar 

  14. Dutilh BE, van Noort V, van der Heijden RT, Boekhout T, Snel B, Huynen MA (2007) Assessment of phylogenomic and orthology approaches for phylogenetic inference. Bioinformatics 23: 815–824

    Article  Google Scholar 

  15. Edwards AW, Cavalli-Sforza LL (1963) The reconstruction of evolution. Ann Hum Genet 27: 105–106

    Google Scholar 

  16. Edwards SV, Fertil B, Giron A, Deschavanne PJ (2002) A genomic schism in birds revealed by phylogenetic analysis of DNA strings. Syst Biol 51: 599–613

    Article  Google Scholar 

  17. Eisen JA (1998) Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. Genome Res 8: 163–167

    Google Scholar 

  18. Eisen JA, Fraser CM (2003) Phylogenomics: intersection of evolution and genomics. Science 300: 1706–1707

    Article  Google Scholar 

  19. Eisen JA, Wu M (2002) Phylogenetic analysis and gene functional predictions: phylogenomics in action. Theor Popul Biol 61: 481–487

    Article  Google Scholar 

  20. Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27: 401–410

    Article  Google Scholar 

  21. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum like-lihood approach. J Mol Evol 17: 368–376

    Article  Google Scholar 

  22. Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  23. Gatesy J, Matthee C, DeSalle R, Hayashi C (2002) Resolution of a supertree/supermatrix paradox. Syst Biol 51: 652–664

    Article  Google Scholar 

  24. Gibb GC, Kardailsky O, Kimball RT, Braun EL, Penny D (2007) Mitochondrial genomes and avian phylogeny: complex characters and resolvability without explosive radiations. Mol Biol Evol 24: 269–280

    Article  Google Scholar 

  25. Glanville JG, Kirshner D, Krishnamurthy N, Sjolander K (2007) Berkeley Phylogenomics Group web servers: resources for structural phylogenomic analysis. Nucleic Acids Res 35: W27–W32

    Article  Google Scholar 

  26. Groth JG, Barrowclough GF (1999) Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Mol Phylogenet Evol 12: 115–123

    Article  Google Scholar 

  27. Hawkins T, Kihara D (2007) Function prediction of uncharacterized proteins. J Bioinform Comput Biol 5: 1–30

    Article  Google Scholar 

  28. Hebert PD, Stoeckle MY, Zemlak TS, Francis CM (2004) Identi_ cation of birds through DNA Barcodes. PLoS Biol 2: e312

    Article  Google Scholar 

  29. Hillis DM (1999) SINEs of the perfect character. Proc Natl Acad Sci U S A 96: 9979–9981

    Article  Google Scholar 

  30. Huelsenbeck JP, Larget B, Miller RE, Ronquist F (2002) Potential applications and pitfalls of Bayesian inference of phylogeny. Syst Biol 51: 673–688

    Article  Google Scholar 

  31. Johnson KP (2001) Taxon sampling and the phylogenetic position of Passeriformes: evidence from 916 avian cytochrome b sequences. Syst Biol 50: 128–136

    Google Scholar 

  32. Jnsson KA, Fjelds J (2006) A phylogenetic supertree of Oscine passerine birds (Aves: Passeri). Zool Scr 35: 149–186

    Article  Google Scholar 

  33. Korbel JO, Snel B, Huynen MA, Bork P (2002) SHOT: a web server for the construction of genome phylogenies. Trends Genet 18: 158–162

    Article  Google Scholar 

  34. Kriegs JO, Churakov G, Kiefmann M, Jordan U, Brosius J, Schmitz J (2006) Retroposed elements as archives for the evolutionary history of placental mammals. PLoS Biol 4: e91

    Article  Google Scholar 

  35. Krishnamurthy N, Brown DP, Kirshner D, Sjolander K (2006) PhyloFacts: an online structural phylogenomic encyclopedia for protein functional and structural classification. Genome Biol 7: R83

    Article  Google Scholar 

  36. Li S, Pearl DK, Doss H (2000) Phylogenetic tree reconstruction using Markov Chain Monte Carlo. J Am Stat Assoc 95: 493–508

    Article  Google Scholar 

  37. Li W-H (1997) Molecular evolution. Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  38. Livezey BC, Zusi RL (2007) High-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zool J Linn Soc 149: 1–95

    Article  Google Scholar 

  39. . Maddison DR, Schulz K-S (2004) The Tree of Life Web Project. http://tolweb.org(last accessed in October 2007).

  40. Malik HS, Heniko_ S (2003) Phylogenomics of the nucleosome. Nat Struct Biol 10: 882–891

    Article  Google Scholar 

  41. Mau B, Newton MA, Larget B (1999) Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Biometrics 55: 1–12

    Article  MATH  MathSciNet  Google Scholar 

  42. Murphy WJ, Pringle TH, Crider TA, Springer MS, Miller W (2007) Using genomic data to unravel the root of the placental mammal phylogeny. Genome Res 17: 413–421

    Article  Google Scholar 

  43. Nahum LA, Reynolds MT, Wang ZO, Faith JJ, Jonna R, Jiang ZJ, Meyer TJ, Pollock DD (2006) EGenBio: A Data Management System for Evolutionary Genomics and Biodiversity. BMC Bioinformatics 7 Suppl 2: S7

    Article  Google Scholar 

  44. Nahum LA, Riley M (2001) Divergence of function in sequence-related groups of Escherichia coli proteins. Genome Res 11: 1375–1381

    Article  Google Scholar 

  45. Nei M, Kumar S (2000) Molecular Evolution and Phylogenetics. Oxford University Press, Oxford; New York

    Google Scholar 

  46. Norvell JC, Machalek AZ (2000) Structural genomics programs at the US National Institute of General Medical Sciences. Nat Struct Biol 7 Suppl: 931

    Google Scholar 

  47. Page RDM, Holmes EC (1998) Molecular evolution: a phylogenetic approach. Blackwell Science, Oxford ; Malden, MA

    Google Scholar 

  48. Pereira SL, Baker AJ (2006) A mitogenomics timescale for birds detects variable phylogenetic rates of molecular evolution and refutes the standard molecular clock. Mol Biol Evol 23: 1731–1740

    Article  Google Scholar 

  49. Pereira SL, Baker AJ, Wajntal A (2002) Combined nuclear and mitochondrial DNA sequences resolve generic relationships within the Cracidae (Galliformes, Aves). Syst Biol 51: 946–958

    Article  Google Scholar 

  50. Philippe H, Lopez P, Brinkmann H, Budin K, Germot A, Laurent J, Moreira D, Muller M, Le Guyader H (2000) Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions. Proc Biol Sci 267: 1213–1221

    Article  Google Scholar 

  51. Pollock DD (2002) Genomic biodiversity, phylogenetics and coevolution in proteins. Appl Bioinformatics 1: 81–92

    Google Scholar 

  52. Qi J, Wang B, Hao BI (2004) Whole proteome prokaryote phylogeny without sequence alignment: a K-string composition approach. J Mol Evol 58: 1–11

    Article  Google Scholar 

  53. Ragan MA (1992) Phylogenetic inference based on matrix representation of trees. Mol Phylogenet Evol 1: 53–58

    Article  Google Scholar 

  54. Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43: 304–311

    Article  Google Scholar 

  55. Reed JL, Patel TR, Chen KH, Joyce AR, Applebee MK, Herring CD, Bui OT, Knight EM, Fong SS, Palsson BO (2006) Systems approach to re_ ning genome annotation. Proc Natl Acad Sci U S A 103: 17480–17484

    Article  Google Scholar 

  56. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425

    Google Scholar 

  57. Serres MH, Riley M (2005) Gene fusions and gene duplications: relevance to genomic annotation and functional analysis. BMC Genomics 6: 33

    Article  Google Scholar 

  58. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored rare biosphere. Proc Natl Acad Sci U S A 103: 12115–12120

    Article  Google Scholar 

  59. Sokal RR, Sneath PHA (1963) Numerical Taxonomy. W. H. Freeman, San Francisco

    Google Scholar 

  60. Soltis DE, Soltis PS, Zanis MJ (2002) Phylogeny of seed plants based on evidence from eight genes. Am. J. Bot. 89: 1670–1681

    Article  Google Scholar 

  61. Stechmann A, Cavalier-Smith T (2002) Rooting the eukaryote tree by using a derived gene fusion. Science 297: 89–91

    Article  Google Scholar 

  62. Thomas GH, Wills MA, Szkely T (2004) A supertree approach to shorebird phylogeny. BMC Evol Biol 4: 28

    Article  Google Scholar 

  63. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 66–74

    Article  Google Scholar 

  64. Watson JD, Sanderson S, Ezersky A, Savchenko A, Edwards A, Orengo C, Joachimiak A, Laskowski RA, Thornton JM (2007) Towards fully automated structure-based function prediction in structural genomics: a case study. J Mol Biol 367: 1511–1522

    Article  Google Scholar 

  65. Waugh J (2007) DNA barcoding in animal species: progress, potential and pitfalls. Bioessays 29: 188–197

    Article  Google Scholar 

  66. Wickstead B, Gull K (2006) A holistic kinesin phylogeny reveals new kinesin families and predicts protein functions. Mol Biol Cell 17: 1734–1743

    Article  Google Scholar 

  67. Wiens JJ (2003) Missing data, incomplete taxa, and phylogenetic accuracy. Syst Biol 52: 528–538

    Article  Google Scholar 

  68. Wolf YI, Rogozin IB, Grishin NV, Tatusov RL, Koonin EV (2001) Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol Biol 1: 8

    Article  Google Scholar 

  69. Yang Z (2006) Computational Molecular Evolution. Oxford University Press, Oxford

    Google Scholar 

  70. Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18: 292–298

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nahum, L.A., Pereira, S.L. (2008). Phylogenomics, Protein Family Evolution, and the Tree of Life: An Integrated Approach between Molecular Evolution and Computational Intelligence. In: Smolinski, T.G., Milanova, M.G., Hassanien, AE. (eds) Applications of Computational Intelligence in Biology. Studies in Computational Intelligence, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78534-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78534-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78533-0

  • Online ISBN: 978-3-540-78534-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics