Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1937))

Agglomerations of granules are described as continuous complex bodies in which the generic material element is an open system made of a family of granules. Inertia is neglected while migration of granules is allowed: an evolution equation for the local numerosity of granules is derived in the present setting. In a reduced framework in which the generic material element coincides with a single granule, the balance of interactions governing the motion of a single granule during segregation is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aronson, I.S., Tsimring, L.S.: Patterns and collective behavior in granular media: theoretical concepts. Rev. Modern Phys., 78, 641–692 (2006)

    Article  Google Scholar 

  2. Bobylev, A.V., Carrillo, J.A., Gamba, I.M.: On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Stat. Phys., 98, 743–773 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bobylev, A., Cercignani, C., Toscani, G.: Proof of an asymptotic property of the Boltzmann for granular materials. J. Stat. Phys., 111, 403–416 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Capriz, G.: Continua with latent microstructure. Arch. Rational Mech. Anal., 90, 43–56 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Capriz, G.: Continua with Microstructure. Springer Tracts in Natural Philosophy. Springer-Verlag, Berlin Heidelberg New York, 35 (1989)

    Google Scholar 

  6. Capriz, G.: Elementary preamble to a theory of granular gases. Rend. Sem. Mat. Univ. Padova, 110, 179–198 (2003)

    MATH  MathSciNet  Google Scholar 

  7. Capriz, G.: Pseudofluids. In: Capriz, G., Mariano, P.M. (eds) Material Substructures in Complex Bodies: from Atomic Level to Continuum. Elsevier Science B.V., Amsterdam, 238–261 (2007)

    Chapter  Google Scholar 

  8. Cercignani, C.: Microscopic foundations of the mechanics of gases and granular materials. In: Capriz, G., Mariano, P.M. (eds) Material Substructures in Complex Bodies: from Atomic Level to Continuum. Elsevier Science B.V., Amsterdam, 63–79 (2007)

    Chapter  Google Scholar 

  9. Edwards, S.F., Grinev, D.V.: The statistical–mechanical theory of stress transmission in granular matter. Physica A, 263, 545–553 (1999)

    Article  MathSciNet  Google Scholar 

  10. Ericksen, J.L.: Kinematics of macromolecules. Arch. Rational Mech. Anal., 9, 1–8 (1962)

    MathSciNet  Google Scholar 

  11. Gamba, I.M., Panferov, V., Villani, C.: On the Boltzmann equation for diffusively excited granular media. Comm. Math. Phys., 246, 503–541 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Goddard, J.D.: Material instability in comlex fluids. Ann. Rev. Fluid Mech., 35, 113–133 (2003)

    Article  MathSciNet  Google Scholar 

  13. Gurtin, M.E.: Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Physica D, 92, 178–192 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquid and gases. Rev. Modern Phys., 68, 1259–1273 (1996)

    Article  Google Scholar 

  15. Kadanoff, L.P.: Built upon sand: Theoretical ideas inspired by granular flows. Rev. Modern Phys., 71, 435–444 (1999)

    Article  Google Scholar 

  16. Krimer, D.O., Pfitzener, M., Bräuer, K., Jiang, Y., Liu, M.: Granular elasticity: General considerations and the stress dip in sand piles. Phys. Rev. E, 74, 061310-1-10 (2006)

    Google Scholar 

  17. Mariano, P.M.: Multifield theories in mechanics of solids. Adv. Appl. Mech., 38, 1–93 (2002)

    Article  Google Scholar 

  18. Mariano, P.M.: Migration of substructures in complex fluids. J. Phys. A, 38, 6823–6839 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mariano, P.M.: Continua with spin structure. In: Capriz, G., Mariano, P.M. (eds) Material Substructures in Complex Bodies: from Atomic Level to Continuum. Elsevier Science B.V., Amsterdam, 314–334 (2007)

    Chapter  Google Scholar 

  20. Mariano, P.M., Stazi, F.L.: Computational aspects of the mechanics of complex bodies. Arch. Comp. Meth. Eng., 12, 391–478 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mitarai, N., Hayakawa, H., Nakanishi, H.: Collisional granular flow as a micropolar fluid. Phys. Rev. Lett., 88, 174301-1-4 (2002)

    Google Scholar 

  22. Šilhavý, M.: The Mechanics and Thermodynamics of Continuous Media. Springer–Verlag, Berlin (1997)

    MATH  Google Scholar 

  23. Truesdell, C.A., Noll, W.: The Non-Linear Field Theories of Mechanics. Third edition, Springer–Verlag, Berlin (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mariano, P.M. (2008). Slow Motion in Granular Matter. In: Capriz, G., Mariano, P.M., Giovine, P. (eds) Mathematical Models of Granular Matter. Lecture Notes in Mathematics, vol 1937. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78277-3_9

Download citation

Publish with us

Policies and ethics