Skip to main content

An Extended Continuum Theory for Granular Media

  • Chapter
Mathematical Models of Granular Matter

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1937))

In a dilatant granular material with rotating grains the kinetic energy in addition to the usual translational one consists of three terms owing to the microstructural motion; in particular, it includes the rotation of granules and the dilatational expansion and contraction of the individual (compressible) grains and of the grains relative to one another. Therefore the balance and constitutive equations of the medium are obtained by considering it as a continuum with a constrained affine microstructure. Moreover, the balance of granular energy is demonstrated to be a direct consequence of the balance of micromomentum, while the dilatational and the rotational microstresses are turned out to be of different physical nature. Finally, a kinetic energy theorem implies that, locally, the power of all inertial forces is the opposite of the time-rate of change of kinetic energy plus the divergence of a flux through the boundary. The peculiar case of a suspension of rotating rigid granules puts in evidence the possibility for granular materials of supporting shear stresses through the generation of microrotational gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmadi, G.: A Generalized Continuum Theory for Granular Materials. Int. J. Non–Linear Mech., 17, 21–33 (1982)

    Article  MATH  Google Scholar 

  2. Arthur, J.R.F., Menzies, B.K.: Inherent Anisotropy in Sand. Geotechnique, 22, 115–129 (1972)

    Article  Google Scholar 

  3. Bampi, F., Morro, A.: The Connection between Variational Principles in Eulerian and Lagrangian Descriptions. J. Math. Phys., 25, 2418–1421 (1984)

    Article  MathSciNet  Google Scholar 

  4. Bedford, A., Drumheller, D.S.: On Volume Fraction Theories for Discretized Materials. Acta Mechanica, 48, 173–184 (1983)

    Article  MATH  Google Scholar 

  5. Bridgman, P.W.: Reflections on Thermodynamics. Proc. Am. Acad. Arts Sci., 82, 301–309 (1953)

    Google Scholar 

  6. Buyevich, Y.A., Shchelchkova, I.N.: Flow of Dense Suspensions. Prog. Aerospace Sci., 18, 121–150 (1978)

    Article  Google Scholar 

  7. Capriz, G.: Continua with Microstructure. Springer Tracts in Natural Philosophy. Springer-Verlag, Berlin Heidelberg New York, 35, (1989)

    Google Scholar 

  8. Capriz, G.: Pseudofluids. In: Capriz, G., Mariano, P.M. (eds) Material Substructures in Complex Bodies: from Atomic Level to Continuum. Elsevier Science B.V., Amsterdam, 238–261 (2006)

    Google Scholar 

  9. Capriz, G.: Elementary Preamble to a Theory of Granular Gases. Rend. Semin. Mat. Padova, 110, 179–198 (2003)

    MATH  MathSciNet  Google Scholar 

  10. Capriz, G., Giovine, P.: On Microstructural Inertia. Math. Mod. Meth. Appl. Sc., 7, 211–216 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Capriz, G., Giovine, P.: Remedy to Omissions in a Tract on Continua with Microstructure. Atti XIII Congresso AIMETA ’97, Siena. Meccanica Generale, I, 1–6 (1997)

    Google Scholar 

  12. Capriz, G., Giovine, P.: Weakly Nonlocal Effects in Mechanics. In: Contributions to Continuum Theories, Krzysztof Wilmanski’s Anniversary Volume, Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Report n.18 - ISSN 0946-8838, 37–44 (2000)

    Google Scholar 

  13. Capriz, G., Mullenger, G.: Extended Continuum Mechanics for the Study of Granular Flows. Rend. Acc. Lincei, Matematica, 6, 275–284 (1995)

    MATH  MathSciNet  Google Scholar 

  14. Capriz, G., Mullenger, G.: Dynamics of Granular Fluids. Rend. Sem. Mat. Univ. Padova, 111, 247–264 (2004)

    MATH  MathSciNet  Google Scholar 

  15. Capriz, G., Podio–Guidugli, P.: Formal Structure and Classification of Theories of Oriented Materials. Annali Mat. Pura Appl. (IV), CXV, 17–39 (1977)

    Article  MathSciNet  Google Scholar 

  16. Capriz, G., Podio–Guidugli, P.: Materials with Spherical Structure. Arch. Rational Mech. Anal., 75, 269–279 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  17. Capriz, G., Podio–Guidugli P., Williams, W.: Balance Equations for Materials with Affine Structure. Meccanica, 17, 80–84 (1982)

    Article  MATH  Google Scholar 

  18. Capriz, G., Podio–Guidugli, P.: Internal Constraint. In: Truesdell, C.: Rational Thermodynamics (second edition), Springer-Verlag, New York, Appendix 3A, 159–170 (1984)

    Google Scholar 

  19. Cosserat, E. and F.: Théorie des Corps Déformables. Hermann (1909)

    Google Scholar 

  20. Cowin, S.C.: A Theory for the Flow of Granular Materials. Powder Technology, 9, 61–69 (1974)

    Article  Google Scholar 

  21. Cowin, S.C.: Microstructural Continuum Models for Granular Materials. In: Cowin, S.C., Satake, M. (eds) Proc. USA–Japan Seminar on Continuum–Mechanical and Statistical Approaches in the Mechanics of Granular Materials, Tokyo. Gakujutsu Bunken Fukyu–Kai (1978)

    Google Scholar 

  22. Cowin, S.C., Nunziato, J.W.: Waves of Dilatancy in a Granular Material with Incompressible Granules. Int. J. Engng. Sci., 19, 993–1008 (1981)

    Article  MATH  Google Scholar 

  23. Dell’Isola, F., Seppecher, P.: Edge Contact Forces and Quasi–Balanced Power. Meccanica, 32, 33–52 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Dunn, J.E., Serrin, J.: On the Thermomechanics of Interstitial Working. Arch. Rat. Mech. Anal., 88, 95–133 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  25. Dunn, J.E.: Interstitial Working and a Nonclassical Continuum Thermodynamics. In: Serrin, J. (ed) New Perspectives in Thermodynamics. Springer–Verlag, Berlin, 187–222 (1986)

    Google Scholar 

  26. Eringen, A.C.: Mechanics of Micromorphic Continua. In: Kröner, E. (ed) Proc. IUTAM Symposium on Mechanics of Generalized Continua, Freudenstadt and Stuttgart (1967) Springer, Berlin Heidelberg New York, 18–35 (1968)

    Google Scholar 

  27. Giovine, P.: Termodinamica dei Continui Granulari Dilatanti. Atti XII Congresso AIMETA ’95, Napoli. Meccanica dei Fluidi, IV, 287–292 (1995)

    Google Scholar 

  28. Giovine, P.: Nonclassical Thermomechanics of Granular Materials. Mathematical Physics, Analysis and Geometry, 2, 179–196 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  29. Giovine, P., Mullenger, G., Oliveri, F.: Remarks on Equations for Fast Granular Flow. In: Inan, E., Markov, K. (eds) Continuum Models and Discrete Systems. World Scientific Publishing Co., Singapore, IX, 787–794 (1998)

    Google Scholar 

  30. Giovine, P., Oliveri, F.: Dynamics and Wave Propagation in Dilatant Granular Materials. Meccanica, 30, 341–357 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  31. Giovine, P., Speciale, M.P.: On Interstitial Working in Granular Continuous Media. In: Ciancio, V., Donato, A., Oliveri, F., Rionero, S. (eds) Proceed. 10th Int. Conf. on Waves and Stability in Continuous Media (WASCOM’99), Vulcano (Me). World Scientific, Singapore, 196–208 (2001)

    Google Scholar 

  32. Godano, C., Oliveri, F.: Nonlinear seismic waves: a model for site effects. Int. J. Non-linear Mech., 34, 457–468 (1999)

    Article  MATH  Google Scholar 

  33. Goodman, M.A., Cowin, S.C.: A Continuum Theory for Granular Materials. Arch. Rational Mech. An., 44, 249–266 (1972)

    MATH  MathSciNet  Google Scholar 

  34. Goodman, M.A., Cowin, S.C.: A Variational Principle for Granular Materials. ZAMM, 56, 281–286 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  35. Grioli, G.: Microstructures as a Refinement of Cauchy Theory. Problems of Physical Concreteness. Continuum Mech. Thermodyn., 15, 441–450 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  36. Gurtin, M.E., Podio–Guidugli, P.: The Thermodynamics of Constrained Materials. Arch. Rational Mech. Anal., 51, 192–208 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  37. Hutter, K., Rajagopal, K.R.: On Flows of Granular Materials. Continuum Mech. Thermodyn., 6, 81–139 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  38. Jenkins, J.T.: Static Equilibrium of Granular Materials. J. Appd. Mech., 42, 603–606 (1975)

    Google Scholar 

  39. Johnson, P.C., Jackson, R.: Frictional–Collisional Constitutive Relations for Granular Materials, with Applications to Plane Shearing. J. Fluid Mech., 176, 67–93 (1987)

    Article  Google Scholar 

  40. Kanatani, K.I.: A Micropolar Continuum Theory for the Flow of Granular Materials. Int. J. Engng. Sci., 17, 419–432 (1979)

    Article  MATH  Google Scholar 

  41. Ko, H.Y., Scott, R.F.: J. Soil Mech. and Found. Div., Proc. ASCE 93, 137–156 (1967)

    Google Scholar 

  42. Kunin, I.A.: Elastic Media with Microstructure II. Springer Series in Solid–State Sciences, 44, Springer–Verlag, Berlin (1983)

    Google Scholar 

  43. Mariano, P.M.: Multifield Theories in Mechanics of Solids. Advances in Applied Mechanics, 38, 1–93 (2002)

    Article  Google Scholar 

  44. Mitarai, N., Hayakawa, H., Nakanishi, H.: Collisional Granular Flow as a Micropolar Fluid. Phys. Rev. Lett., 88, 174301 (2002)

    Article  Google Scholar 

  45. Nunziato, J.W., Walsh, E.K.: One-Dimensional Shock Waves in Uniformly Distributed Granular Materials. Int. J. Solids Structures, 14, 681–689 (1978)

    Article  MATH  Google Scholar 

  46. Passman, S.L.: Mixtures of Granular Materials. Int. J. Engng. Sci., 15, 117–129 (1977)

    Article  MATH  Google Scholar 

  47. Passman, S.L., Nunziato, J.W., Bailey, P.B., Thomas jr., J.P.: Shearing Flows of Granular Materials. J. Engng. Mech. Div. ASCE, 4, 773–783 (1980)

    Google Scholar 

  48. Passman, S.L., Nunziato, J.W., Walsh, E.K.: A Theory of Multiphase Mixtures. In: Truesdell, C., Rational Thermodynamics. Springer-Verlag, New York, 286–325 (1984)

    Google Scholar 

  49. Reynolds, O.: On the Dilatancy of Media Composed of Rigid Particles in Contact. Phil. Magazine, 20, 469–481 (1885)

    Google Scholar 

  50. Savage, S.B.: Gravity Flow of Cohesionless Granular Materials in Chutes and Channels. J. Fluid Mech., 92, part 1, 53–96 (1979)

    Article  MATH  Google Scholar 

  51. Truesdell, C., Toupin, R.A.: The Classical Field Theories. Handbuch der Physik, III/1, Flügge, S. (ed), Springer–Verlag, Berlin (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giovine, P. (2008). An Extended Continuum Theory for Granular Media. In: Capriz, G., Mariano, P.M., Giovine, P. (eds) Mathematical Models of Granular Matter. Lecture Notes in Mathematics, vol 1937. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78277-3_8

Download citation

Publish with us

Policies and ethics