Skip to main content

From Granular Matter to Generalized Continuum

  • Chapter
Mathematical Models of Granular Matter

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1937))

Following a cursory review and synthesis of multipolar continua, the rudiments of graph theory, and granular mechanics, a graph-theoretic, energy-based homogenization is proposed for the systematic derivation of multipolar stress and kinematics in granular media. This provides a weakly non-local hierarchy of multipolar field equations for quasi-static mechanics based on polynomial representations of the kinematics of the type employed in past works. As an improvement on those works, a method is proposed for avoiding “overfitting” of fluctuations based on the so-called “Generalized Additive Method” of statistics. Among other results, it is shown that the standard formula for Cauchy stress in granular media may break down owing to multipolar effects, and that granular rotations in the typical granular medium should not lead to Cosserat effects, as the lowest-order departure from the simple-continuum model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Bagi. Stress and strain in granular assemblies. Mech. Mater., 22(3):165–177, 1996.

    Article  Google Scholar 

  2. J. P. Bardet and J. Proubet. Application of micromechanics to incrementally nonlinear constitutive equations. In J. Biarez and R. Gourvès, editors, Powders and Grains, pages 265–273. Balkema, Rotterdam, 1989.

    Google Scholar 

  3. J. P. Bardet and I. Vardoulakis. The asymmetry of stress in granular media. Int. J. Solids Struct., 38(2):353–67, 2001.

    Article  MATH  Google Scholar 

  4. C. Berge. Graphs and Hypergraphs. North-Holland Publishing Co., Amsterdam, 1973.

    MATH  Google Scholar 

  5. N. Biggs. Interaction Models. Cambridge University Press, Cambridge, U.K., 1977.

    Book  MATH  Google Scholar 

  6. N. Biggs. Algebraic Graph Theory. Cambridge University Press, Cambridge, U.K., 2nd edition, 1994.

    MATH  Google Scholar 

  7. N. Biggs, E. K. Lloyd, and R. J. Wilson. Graph Theory 1736–1936. Clarendon Press, Oxford, U.K., 1976.

    MATH  Google Scholar 

  8. R. Blumenfeld and S. F. Edwards. Granular entropy: Explicit calculations for planar assemblies. Phys. Rev. Lett., 90(11):114303/1–4, 2003.

    Article  Google Scholar 

  9. A. L. Cauchy. De la pression ou tension dans un système de points matériels. Exércises de maths., 2:42, 1827.

    Google Scholar 

  10. C. S. Chang and J. Gao. Kinematic and static hypotheses for constitutive modelling of granulates considering particle rotation. Acta Mech., 115(1–4):213–229, 1996.

    Article  MATH  Google Scholar 

  11. E. Cosserat and F. Cosserat. Théorie des Corps Déformables (Theory of Deformable Bodies). A. Hermann et Fils, Paris, 1909. (English translation in NASA TT F-475 11,561, Nat. Aero. Space Adm., Washington D.C., February, 1968).

    Google Scholar 

  12. H. S. M. Coxeter. Regular Polytopes. Dover, New York, 3rd edition, 1973.

    Google Scholar 

  13. W. Ehlers, E. Ramm, S. Diebels, and G. A. D’Addetta. From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses. Int. J. Solids Struct., 40(24):6681–6702, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. C. Eringen. Theory of micropolar elasticity. In Fracture, an advanced treatise, volume 2, pages 622–728. Academic Press, New York, 1968.

    Google Scholar 

  15. A. C. Eringen. Balance laws of micromorphic continua revisited. Int. J. Eng. Sci., 30(6):805–10, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. C. Eringen. Microcontinuum Field Theories: Foundations and Solids. Springer-Verlag, New York-Berlin, 1999.

    MATH  Google Scholar 

  17. A. C. Eringen. Nonlocal Continuum Field Theories. Springer, New York, 2002.

    MATH  Google Scholar 

  18. J. D. Goddard. Microstructural origins of continuum stress fields - a brief history and some unresolved issues. In D. De Kee and P. N. Kaloni, editors, Recent developments in sturctured continua, volume 143 of Pitman Research Notes in Mathematics, pages 179–208. Longman/J. Wiley, New York, 1986.

    Google Scholar 

  19. J. D. Goddard. Continuum modeling of granular assemblies. In H. J. Herrmann, et al., editor, NATO ASI, Physics of Dry Granular Media, page 24. Kluwer, Dordrecht, 1998.

    Google Scholar 

  20. J. D. Goddard. On entropy estimates of contact forces in static granular assemblies. Int. J. Solids Struct., 41(21):5851–61, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  21. J. D. Goddard. Granular media as generalized micromorphic continua. In R. García-Rojo and et al., editors, Powders and Grains 2005, volume 1, pages 129–134. Taylor & Francis Group, London, 2005.

    Google Scholar 

  22. A. E. Green and P. M. Naghdi. A unified procedure for construction of theories of deformable media. 1.classical continuum physics & 2.generalized continua. Proc. Roy. Soc. London A, 448(1934):335–356, 357–377, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. E. Green and R. S. Rivlin. Multipolar continuum mechanics. Arch. Rat. Mech. Anal., 17(2):113–47, 1964.

    Article  MATH  MathSciNet  Google Scholar 

  24. A. E. Green and S. Rivlin. Relation between director and multipolar theories in continuum mechanics. ZAMP, 18(2):208–18, 1967.

    Article  MATH  Google Scholar 

  25. A. E. Green and R. S. Rivlin. Simple force and stress multipoles. Arch. Rat. Mech. Anal., 16:325–53, 1964.

    MATH  MathSciNet  Google Scholar 

  26. J. T. Jenkins. Anisotropic elasticity for random arrays of identical spheres. In J. Wu, T. C. T. Ting, and D. M. Barnett, editors, Modern Theory of Anisotropic Elasticity and Applications, pages 368–377. SIAM, Philadelphia, 1990.

    Google Scholar 

  27. J. T. Jenkins and M. A. Koenders. The incremental response of random aggregates of identical round particles. Eur. Phys. J. E, 13(2):113–23, 2004.

    Article  Google Scholar 

  28. K-I. Kanatani. An entropy model for shear deformation of granular materials. Lett. Appl. Engng. Sci. (Int. J. Eng. Sci.), 18:989–998, 1980.

    MATH  Google Scholar 

  29. G. Kirchhoff. üeber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme gefürt wird. Ann. Phys. Chem., 72(12):497–508, 1847. (English translation in Biggs 1976).

    Article  Google Scholar 

  30. N. Kirchner and P. Steinmann. A unifying treatise on variational principles for gradient and micro-morphic continua. Phil. Mag., 85:3875–95, 2005.

    Article  Google Scholar 

  31. N. P. Kruyt. Statics and kinematics of discrete Cosserat-type granular materials. Int. J. Solids Struct., 40(3):511–534, 2003.

    Article  MATH  Google Scholar 

  32. S. Lefschetz. Applications of Algebraic Topology - Graphs and Networks: The Picard-Lefschetz Theory and Feynman Integrals. In Applied mathematical sciences (Springer-Verlag New York Inc.), volume 16. Springer-Verlag, New York, 1975.

    Google Scholar 

  33. C.-L. Liao, T.-P. Chang, D.-H. Young, and C. S. Chang. Stress-strain relationship for granular materials based on the hypothesis of best fit. Int. J. Solids Struct., 34(31–32):4087–100, 1997.

    Article  MATH  Google Scholar 

  34. A. E. H. Love. A Treatise on the Mathematical Theory of Elasticity. Dover, New York, 4th edition, 1944. (Bibliographic endnotes).

    MATH  Google Scholar 

  35. R. D. Mindlin. Micro-structure in linear elasticity. Arch. Rat. Mech. Anal., 16(1):51–78, 1964.

    Article  MATH  MathSciNet  Google Scholar 

  36. H. B. Mühlhaus and I. Vardoulakis. Thickness of shear bands in granular materials. Geotechnique, 37(3):271–283, 1987.

    Article  Google Scholar 

  37. M. Oda and K. Iwashita, editors. Mechanics of Granular Materials - An Introduction. Balkema, Rotterdam/Brookfield, 1999.

    Google Scholar 

  38. M. Satake. New formulation of graph-theoretical approach in the mechanics of granular-materials. Mech. Mater., 16(1–2):65–72, 1993.

    Article  Google Scholar 

  39. I. V. Savel’ev. Branched coverings over manifolds. J. Math. Sci., 119:605–57, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  40. O. Shai. Deriving structural theorems and methods using Tellegen’s theorem and combinatorial representations. Int. J. Solids Struct., 38(44–45 Oct 12):8037–52, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  41. E. S. Suhubi and A. C. Eringen. Nonlinear theory of micro-elastic solids. II. Int. J. Eng. Sci., 2(4):389–404, 1964.

    Article  MathSciNet  Google Scholar 

  42. A. S. J. Suiker, R. De Borst, and C. S. Chang. Micro-mechanical modelling of granular material. part 1: Derivation of a second-gradient micro-polar constitutive theory. Acta Mech., 149(1–4):161–180, 2001.

    Article  MATH  Google Scholar 

  43. C. Truesdell and W. Noll. The non-linear field theories of mechanics. In S. Flügge, editor, Encyclopedia of Physics (Handbuch der Physik), volume III/3. Springer-Verlag, Berlin, New York, 1965.

    Google Scholar 

  44. C. Truesdell and R. A. Toupin. Principles of classical mechanics and field theory. In S. Flügge, editor, Encyclopedia of Physics (Handbuch der Physik), volume III/1. Springer, Berlin, 1960.

    Google Scholar 

  45. I. Vardoulakis. Private communication, 2005.

    Google Scholar 

  46. I. Vardoulakis and E. C. Aifantis. Gradient dependent dilatancy and its implications in shear banding and liquefaction. Arch. Appl. Mech. (Ingenieur Archiv), 59(3):197–208, 1989.

    MathSciNet  Google Scholar 

  47. J. Weber. Recherches concernant le contraintes intergranulaires dans les milieux pulvérents; application à la rhéologie de ces milieux. Cahiers français rhéol., 2:161–170, 1966.

    Google Scholar 

  48. E. W. Weisstein. Polyhedral Formula. In http://mathworld.wolfram.com. Wolfram Research Inc.-CRC Press, 2005.

  49. S. N. Wood. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc., 99(467):673–86, 2004.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goddard, J.D. (2008). From Granular Matter to Generalized Continuum. In: Capriz, G., Mariano, P.M., Giovine, P. (eds) Mathematical Models of Granular Matter. Lecture Notes in Mathematics, vol 1937. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78277-3_1

Download citation

Publish with us

Policies and ethics