Skip to main content

A Discrete Approach for Supervised Pattern Recognition

  • Conference paper
Combinatorial Image Analysis (IWCIA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4958))

Included in the following conference series:

Abstract

We present an approach for supervised pattern recognition based on combinatorial analysis of optimum paths from key samples (prototypes), which creates a discrete optimal partition of the feature space such that any unknown sample can be classified according to this partition. A training set is interpreted as a complete graph with at least one prototype in each class. They compete among themselves and each prototype defines an optimum-path tree, whose nodes are the samples more strongly connected to it than to any other. The result is an optimum-path forest in the training set. A test sample is assigned to the class of the prototype which offers it the optimum path in the forest. The classifier is designed to achieve zero classification errors in the training set, without over-fitting, and to learn from its errors. A comparison with several datasets shows the advantages of the method in accuracy and efficiency with respect to support vector machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allène, C., Audibert, J.Y., Couprie, M., Cousty, J., Keriven, R.: Some links between min-cuts, optimal spanning forests and watersheds. In: Mathematical Morphology and its Applications to Image and Signal Processing (ISMM’07), MCT/INPE, pp. 253–264 (2007)

    Google Scholar 

  2. Asuncion, A., Newman, D.: UCI machine learning repository (2007)

    Google Scholar 

  3. Beucher, S., Meyer, F.: The morphological approach to segmentation: The watershed. Mathematical Morphology in Image Processing, 433–481 (1993)

    Google Scholar 

  4. Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Proc. 5th Workshop on Comp. Learning Theory, pp. 144–152 (1992)

    Google Scholar 

  5. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm .

  6. Cohen, J.: A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20, 37–46 (1960)

    Article  Google Scholar 

  7. Collins, D., Zijdenbos, A., Kollokian, V., Sled, J., Kabani, N., Holmes, C., Evans, A.: Design and construction of a realistic digital brain phantom. IEEE Trans. on Medical Imaging 17(3), 463–468 (1998)

    Article  Google Scholar 

  8. Collobert, R., Bengio, S.: Links between perceptrons, mlps and svms. In: Proceedings of the 21th Int. Conf. on Machine learning, p. 23 (2004)

    Google Scholar 

  9. Corel: Corel stock photo images, http://www.corel.com

  10. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  11. Duan, K., Keerthi, S.S.: Which is the best multiclass svm method? an empirical study. Multiple Classifier Systems, 278–285 (2005)

    Google Scholar 

  12. Falcão, A., Stolfi, J., Lotufon, R.: The image foresting transform: Theory, algorithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 19–29 (2004)

    Article  Google Scholar 

  13. Haykin, S.: Neural networks: A comprehensive foundation. Prentice Hall, Englewood Cliffs (1994)

    MATH  Google Scholar 

  14. Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1988)

    MATH  Google Scholar 

  15. Kuncheva, L.: Fuzzy classifier design. Physica-Verlag and Springer (2000)

    Google Scholar 

  16. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience, Chichester (2004)

    MATH  Google Scholar 

  17. Lotufo, R.A., Falcão, A.X., Zampirolli, F.A.: Fast euclidean distance transform using a graph-search algorithm. In: Proc. of the 13th Braz. Symposium on Computer Graphics and Image Processing, pp. 269–275 (2000)

    Google Scholar 

  18. Montoya-Zegarra, J., Papa, J., Leite, N., Torres, R., Falcão, A.: Rotation-invariant texture recognition. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Paragios, N., Tanveer, S.-M., Ju, T., Liu, Z., Coquillart, S., Cruz-Neira, C., Müller, T., Malzbender, T. (eds.) ISVC 2007, Part II. LNCS, vol. 4842, pp. 193–204. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. MPEG-7: Mpeg-7: The generic multimedia content description standard, part 1. IEEE MultiMedia 09(2), 78–87 (2002)

    Google Scholar 

  20. Panda, N., Chang, E.Y., Wu, G.: Concept boundary detection for speeding up svms. In: Proc. of the 23rd Int. Conf. on Machine learning, pp. 681–688 (2006)

    Google Scholar 

  21. Papa, J.P., Falcão, A.X., Miranda, P.A.V., Suzuki, C.T.N., Mascarenhas, N.D.A.: Design of robust pattern classifiers based on optimum-path forests. In: Mathematical Morphology and its Applications to Image and Signal Processing (ISMM 2007), MCT/INPE, pp. 337–348 (2007)

    Google Scholar 

  22. Persoon, E., Fu, K.: Shape Discrimination Using Fourier Descriptors. IEEE Transanctions on Systems, Man, and Cybernetics 7(3), 170–178 (1977)

    Article  MathSciNet  Google Scholar 

  23. Reyzin, L., Schapire, R.E.: How boosting the margin can also boost classifier complexity. In: Proc. of the 23rd Int. Conf. on Machine learning, pp. 753–760 (2006)

    Google Scholar 

  24. Rocha, L.M., Falcão, A.X., Meloni, L.G.P.: A robust extension of the mean shift algorithm using optimum path forest. In: 8th International Workshop on Combinatorial Image Analysis (accepted, 2008)

    Google Scholar 

  25. Saha, P.K., Udupa, J.K.: Relative fuzzy connectedness among multiple objects: theory, algorithms, and applications in image segmentation. Comput. Vis. Image Underst. 82(1), 42–56 (2001)

    Article  MATH  Google Scholar 

  26. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  27. Swain, M., Ballard, D.: Color Indexing. International Journal of Computer Vision 7(1), 11–32 (1991)

    Article  Google Scholar 

  28. Tang, B., Mazzoni, D.: Multiclass reduced-set support vector machines. In: Proc. of the 23rd Int. Conf. on Machine learning, pp. 921–928 (2006)

    Google Scholar 

  29. Torres, R., Falcão, A.X., Costa, L.: A graph-based approach for multiscale shape analysis. Pattern Recognition 37(6), 1163–1174 (2004)

    Article  Google Scholar 

  30. Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE TPAMI 13(6), 583–598 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Valentin E. Brimkov Reneta P. Barneva Herbert A. Hauptman

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Papa, J.P., Falcão, A.X., Suzuki, C.T.N., Mascarenhas, N.D.A. (2008). A Discrete Approach for Supervised Pattern Recognition. In: Brimkov, V.E., Barneva, R.P., Hauptman, H.A. (eds) Combinatorial Image Analysis. IWCIA 2008. Lecture Notes in Computer Science, vol 4958. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78275-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78275-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78274-2

  • Online ISBN: 978-3-540-78275-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics