Skip to main content

Kausale, lineare Systeme, beschrieben durch Differenzengleichungen

  • Chapter
Book cover Digitale Signalverarbeitung 1
  • 5715 Accesses

Auszug

Praktisch realisierbare diskrete Systeme werden im allgemeinen durch Differenzengleichungen endlicher Ordnung beschrieben. Sie ergeben sich in einer noch zu erläuternden Weise als Spezialfälle der allgemeinen Systeme, deren Eigenschaften wir im letzten Kapitel untersucht haben.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Schüßler, H.W.: Netzwerke, Signale und Systeme. Bd. 2. Berlin: Springer 3. Auflage 1991

    Google Scholar 

  2. Unbehauen, R.: Systemtheorie. Grundlagen für Ingenieure. 5. Aufl. München: Oldenbourg 1990

    Google Scholar 

  3. Roberts, J.A.; Mullis, C.T.: Digital signal processing. Reading, Mass.: Addison-Wesley 1987

    MATH  Google Scholar 

  4. Graham, A.: Kronecker products and matrix calculus with applications. Ellis Horwood Series. New York: Halsted Press 1981

    Google Scholar 

  5. Kailath, Th.: Linear Systems. Englewood Cliffs, N.J.: Prentice-Hall 1980

    MATH  Google Scholar 

  6. Schüßler, H.W.: Netzwerke, Signale und Systeme, Bd. 1. Berlin: Springer 3. Auflage 1991

    Google Scholar 

  7. Power, H.M.: The mechanics of the bilinear transformation. IEEE Trans. Educ. 10 (1967) 114–116

    Article  Google Scholar 

  8. Jury, E.I.; Chan, O.W.C.: Combinatorial rules for some useful transformations. IEEE Trans. Circuit Theory 20 (1973) 476–480

    Google Scholar 

  9. Davies, A.C.: Bilinear transformation of polynomials. IEEE Trans. Circuits and Systems 21 (1974) 792–794

    Article  Google Scholar 

  10. Parthasarathy, R.; Jayasimha, K.N.: Bilinear transformation by synthetic division. IEEE Trans. Autom. Control 29 (1984) 575–576

    Article  MATH  Google Scholar 

  11. Jury, E.I.: Theory and application of the z-transform method. Huntington, New York: Krieger 1973

    Google Scholar 

  12. Schüßler, H.W.: A stability theorem for discrete systems. IEEE Trans. Acoust. Speech Signal Process. 24 (1976) 87–89

    Article  Google Scholar 

  13. Steffen, P.: An algorithm for testing stability of discrete systems. IEEE Trans. Acoust. Speech Signal Process. 25 (1977) 454–456

    Article  MATH  Google Scholar 

  14. Aström, K.J.: Introduction to stochastic control theory. New York: Academic Press 1970

    MATH  Google Scholar 

  15. Tietz, H.: Funktionentheorie. Abschn. A in Sauer, R.; Szabó, I. (Hrsg.): Mathematische Hilfsmittel des Ingenieurs. Teil I. Berlin: Springer 1967

    Google Scholar 

  16. Boyd, St.: Multitone Signals with Low Crest Factor. IEEE Trans. Circuits and Systems, 33 (1986) 1018–1022

    Article  Google Scholar 

  17. Vary, P.: Fast Digital Frequency Response Measurement with Multifrequency Signals, Arch. elektr. Übertrag. 34 (1980) 190–195

    Google Scholar 

  18. Unbehauen, R.: Determination of the transfer function of a digital filter from the real part of the frequency response. Arch. elektr. Übertrag. 26 (1972) 551–557

    Google Scholar 

  19. Schüßler, H.W.; Steffen, P.: On the Design of Allpasses with Prescribed Group Delay. Proc. of ICASSP Albuquerque (1990) 1313–1316

    Google Scholar 

  20. Zurmühl, R.; Falk, S.: Matrizen und ihre Anwendungen 1. Grundlagen. Berlin: Springer, 6. Auflage 1992

    MATH  Google Scholar 

  21. Burrus, C.S.; Parks, T.W.: DFT/FFT and Convolution Algorithms. New York: John Wiley & Sons 1985

    Google Scholar 

  22. Stoer J.: Einführung in die Numerische Mathematik I. Heidelberger Taschenbücher Band 105. Berlin: Springer 1972

    Google Scholar 

  23. Czarnach, R.: Recursive processing by noncausal digital filters. IEEE Trans. Acoust. Speech Signal Process. 30 (1982) 363–370

    Article  Google Scholar 

  24. Jackson, L.B.: Digital Filters and Signal Processing, Third Eddition with MAT-LAB Exercises. Boston: Kluwer AcademicPublishers 1996

    Google Scholar 

  25. Oppenheim, A.V.; Schafer, R.W.: Discrete-Time Signal Processing. Upper Saddle River, N.J.: Prentice-Hall 1999

    Google Scholar 

  26. Dehner, G.F.: Noise optimized IIR Digital Filter Design-Tutorial and some new aspects. Signal Processing 83 (2003) 1565–1582

    Article  MATH  Google Scholar 

  27. Mitra, S.K.; Kaiser, J.F.: Handbook for Digital Signal Processing. New York, NY: John Whily & Sons 1993

    MATH  Google Scholar 

  28. Levi, E.C.: Complex-Curve Fitting. IRE Trans. on Automatic Control AC-4 (1959) 37–44

    Google Scholar 

  29. Dennis, J.E.; Schnabel R.B.: Numerical methods for unconstrained optimization and nonlinear equations. Prentice-Hall, 1983

    Google Scholar 

  30. Bennet, W.R.: Distribution of the sum of randomly phased components. Quarterly Appl. Math. 5 (1948) 385–393

    MATH  Google Scholar 

  31. Schüßler, H.W.; Dong, Y.: A new method for measuring the performance of weakly nonlinear and noisy systems. Frequenz 44 (1990) 3–4

    Google Scholar 

  32. Schüßler, H.W.; Heinle, F.: Measuring the properties of implemented digital systems. Frequenz 48 (1994) 1–2

    Google Scholar 

  33. Burrus, C.S.; McClellan, J.H.; Oppenheim, A.V.; Parks, T.W.; Schafer, R.W.; Schüßler, H.W.: Computer-Based Exercises for Signal Processing using MAT-LAB. Upper Saddle River, N.J.: Prentice-Hall, 1994

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Kausale, lineare Systeme, beschrieben durch Differenzengleichungen. In: Digitale Signalverarbeitung 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78251-3_5

Download citation

Publish with us

Policies and ethics