Skip to main content

Dissipative Nonlinear Structures in Fiber Optics

  • Chapter
  • First Online:
Dissipative Solitons: From Optics to Biology and Medicine

Part of the book series: Lecture Notes in Physics ((LNP,volume 751))

Abstract

Optical fiber materials exhibit a nonlinear response to strong electric fields, such as those of optical signals confined within the small fiber core. Fiber nonlinearity is an essential component in the design of the next generation of advanced optical communication systems, but its use is often avoided by engineers because of its intractability. The application of nonlinear technologies in fiber optics offers new opportunities for the design of photonic systems and devices. In this chapter, we make an overview of recent progress in mathematical theory and practical applications of temporal dissipative solitons and self-similar nonlinear structures in optical fiber systems. The design of all-optical high-speed signal processing devices, based on nonlinear dissipative structures, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Hasegawa and F.D. Tappert, Appl. Phys. Lett. 23, 142–144 (1973).

    Article  ADS  Google Scholar 

  2. V.E. Zakharov and A.B. Shabat, Zh. Eksp. Teor. Fiz. 60, 136(1971); [Sov. Phys. JETP 33, 77–81 (1971).]

    Google Scholar 

  3. S.V. Manakov, Zh. Ekp. Teor. Fiz. 65, 505–516 (1973); [Sov. Phys. JETP 38, 248–253 (1973).

    Google Scholar 

  4. A. Hasegawa and Y. Kodama, Solitons in Optical Communications, (Clarendon, Oxford University Press, Oxford, (1995).

    MATH  Google Scholar 

  5. L.F. Mollenauer, S.G. Evangelides, and H.A. Haus, IEEE J. Lightwave Technol. 9: 194–196 (1991).

    Article  ADS  Google Scholar 

  6. A. Hasegawa and Y. Kodama, Opt. Lett. 15, 1443–1445 (1990); Phys. Rev. Lett. 66:161–164 (1991).

    Article  ADS  Google Scholar 

  7. K.J. Blow and N.J. Doran, IEEE Photon Technol. Lett. 3, 369–371 (1991).

    Article  ADS  Google Scholar 

  8. Akhmediev, N. Ankiewicz, A. (eds.): Dissipative Solitons, Lect. Notes Phys. 661. Springer, Bevlin (2005)

    Google Scholar 

  9. N.N. Rozanov, PHYS-USP 43, 421–424 (2000).

    Article  ADS  Google Scholar 

  10. W.J. Firth, Theory of cavity solitons. in: Soliton-Driven photonics, edited by A.D. Boardman and A.P. Sukhorukov, (Kluwer, Amsterdam, (2001), pp. 459–485.

    Google Scholar 

  11. A.V. Yulin, D.V. Skryabin, and P.St.J. Russell, Opt. Express 13, 3529–3534 (2005).

    Article  ADS  Google Scholar 

  12. B.S. Kerner and V.V. Osipov, Autosolitons, (Kluwer Academic Publ, Dordrecht, (1994).

    Google Scholar 

  13. V.S. Grigoryan, Phys. Lett. A 149, 371–380 (1990).

    Article  ADS  Google Scholar 

  14. A.G. Vladimirov, G.V. Khodova, and N.N. Rosanov, Phys. Rev. E 63, 056607(6) (2001).

    ADS  Google Scholar 

  15. I. Gabitov, D.D. Holm, B.P. Luce, and A. Mattheus, Opt. Lett. 20, 2490–2492 (1995).

    Article  ADS  Google Scholar 

  16. I. Gabitov, D.D. Holm, and B.P. Luce, J. Opt. Soc. Am. B. 14, 1850–1855 (1997).

    Article  ADS  Google Scholar 

  17. E.V. Vanin, A.I. Korytin, A.M. Sergeev, D. Anderson, M. Lisak, and L. Vasquez, Phys. Rev. A 49, 2806–2811 (1994)

    Article  ADS  Google Scholar 

  18. A.M. Sergeev, E.V. Vanin, D. Anderson, M. Lisak, and M. Quiroga Teixeiro, J. Opt. Soc. Am. B 15, 1641–1646 (1998).

    Google Scholar 

  19. P.V. Mamyshev, and N.A. Mamysheva, Opt. Lett. 24, 1454–1456 (1999).

    Article  ADS  Google Scholar 

  20. I. Gabitov and S.K. Turitsyn, Opt. Lett. 21, 327–329 (1996).

    Article  ADS  Google Scholar 

  21. S. Boscolo, J.H.B. Nijhof, and S.K. Turitsyn, Opt. Lett. 25, 1240–1242 (2000).

    Article  ADS  Google Scholar 

  22. S. Boscolo, S.K. Turitsyn, and K.J. Blow, Electron. Lett. 37, 112–113 (2001); IEEE Photon Technol. Lett. 14, 30–32 (2002).

    Article  Google Scholar 

  23. K.J. Blow, S. Boscolo, and S.K. Turitsyn, Patent GB2371160 A (17/07/(2002); Patent GB2371160 B (30/06/(2004); Patent WO02056506 A2 (18/07/(2002); Patent WO02056506 A3 (01/05/(2003); Patent EP1356612 A2 (29/10/(2003); Patent US2004076373 A1 (22/04/(2004).

    Google Scholar 

  24. D. Rouvillain, et al. Electron Lett. 38, 1113–1114 (2002).

    Article  Google Scholar 

  25. S. Boscolo, S.A. Derevyanko, S.K. Turitsyn, A.S. Kovalev, and M.M. Bogdan, Phys. Rev. E 72, 016601(4) (2005); Theor. Math. Phys. 144, 1117–1127 (2005).

    Google Scholar 

  26. J.H.B. Nijhof, N.J. Doran, W. Forysiak, and A. Berntson, Electron. Lett. 34, 481–482 (1998).

    Article  Google Scholar 

  27. G.I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics, (Cambridge University Press, Cambridge, (1996).

    MATH  Google Scholar 

  28. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M.L. Quiroga-Teixeiro, J. Opt. Soc. Am. B 10, 1185–1190 (1993).

    Article  ADS  Google Scholar 

  29. M.E. Fermann, V.I. Kruglov, B.C. Thomsen, J.M. Dudley, and J.D. Harvey, Phys. Rev. Lett. 84, 6010–6013 (2000); V.I. Kruglov, A.C. Peacock, J.M. Dudley, and J.D. Harvey, Opt. Lett. 25, 1753–1755 (2000).

    Article  ADS  Google Scholar 

  30. S. Boscolo, S.K. Turitsyn, V.Yu. Novokshenov, and J.H.B Nijhof, Theor. Math. Phys. 133, 1647–1656 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  31. C. Finot, G. Millot, C. Billet, and J.M. Dudley, IEEE J. Sel. Top. Quantum Electron. 10, 1211–1218 (2004).

    Article  Google Scholar 

  32. C. Finot, G. Millot, and J.M. Dudley, Opt. Lett. 29, 2533–2535 (2004).

    Article  ADS  Google Scholar 

  33. C. Finot, F. Parmigiani, P. Petropoulos, and D.J. Richardson, Opt. Express 14, 3161–3170 (2006).

    Article  ADS  Google Scholar 

  34. F.ö. Ilday, J.R. Buckley, W.G. Clark, and F.W. Wise, Phys. Rev. Lett. 92, 213902(4) (2004).

    Article  ADS  Google Scholar 

  35. V.E. Zakharov, and E.A. Kuznetsov, Sov. Phys. JETP 64, 773–780 (1986).

    Google Scholar 

  36. A.R. Its and V.Yu. Novokshenov, The Isodromic Deformation Method in the Theory of Painlevé; Equations (Lect Notes Math (1191), (Springer, Berlin, (1986); S.P. Hastings and J.B. McLeod, Arch. Ration Mech. Anal. 73, 31–51 (1980).

    Google Scholar 

  37. O.A. Ladyzhenskaya, V.A. Solonnikov, and N.N. Ural’tseva, Linear and Quasi-Linear Equations of Parabolic Type (Transl Math Monographs 23), (Amer Math Soc, Providence, RI, (1968).

    Google Scholar 

  38. M. Suzuki, H. Toda, A. H. Liang, and A. Hasegawa, IEEE Photon Technol. Lett. 13, 1248–1250 (2001).

    Article  ADS  Google Scholar 

  39. S. Boscolo and S.K. Turitsyn, IEEE Photon Technol. Lett. 16, 1912–1914 (2004).

    Article  ADS  Google Scholar 

  40. S. Boscolo, S.K. Turitsyn, and K.J. Blow, Opt. Express 13, 6217–6227 (2005).

    Article  ADS  Google Scholar 

  41. K.J. Blow, S. Boscolo, and S.K. Turitsyn, Patent GB2421382 A (21/06/(2006); Patent WO2006064240 A1 (22/06/(2006).

    Google Scholar 

  42. P. Ghelfi, M. Scaffardi, M. Secondini, F. Fresi, MF. Matchouani, A. Bogoni, and L. Pot\’i, in Proceedings of 31st European Conference on Optical Communication:We1.2.2, (Glasgow, United Kingdom, (2005).

    Google Scholar 

  43. M. Rochette, JN. Kutz, JL. Blows, D. Moss, JT. Mok, BJ. Eggleton, IEEE Photon. Technol. Lett. 17, 908–910 (2005).

    Article  ADS  Google Scholar 

  44. Nasieva IO, Boscolo S, Turitsyn SK (2006) Opt. Lett. 31:1205–1207

    Article  ADS  Google Scholar 

  45. H. Nakatsuka, D. Grischkowsky and AC. Balant, Phys. Rev. Lett. 47, 910–913 (1981).

    Article  ADS  Google Scholar 

  46. GP. Agrawal, Fiber-Optic Communication Systems. 3rd ed, (Wiley, New York, (2002).

    Book  Google Scholar 

  47. BA. Berg and T. Neuhaus Phys. Rev. Lett. 68, 9–12 (1992).

    Article  ADS  Google Scholar 

  48. R. Holzlöhner and CR. Menyuk, Opt. Lett. 28, 1894–1896 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.K. Turitsyn .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Turitsyn, S., Boscolo, S. (2008). Dissipative Nonlinear Structures in Fiber Optics. In: Dissipative Solitons: From Optics to Biology and Medicine. Lecture Notes in Physics, vol 751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78217-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78217-9_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78216-2

  • Online ISBN: 978-3-540-78217-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics