Skip to main content

Compounds of Fiber-Optic Solitons

  • Chapter
  • First Online:
Dissipative Solitons: From Optics to Biology and Medicine

Part of the book series: Lecture Notes in Physics ((LNP,volume 751))

Abstract

The concept of solitons is making inroads into industrial applications. In optical telecommunications, we see the beginning of the commercial utilization of temporal solitons – short pulses of light traveling down an optical fiber which are stabilized by nonlinearity. This technology is very successful, and yet the data-carrying capacity of optical fiber, even though it is enormous, is on the verge of reaching a fundamental limit. Concepts beyond individual soliton pulses might be helpful in pushing beyond, or working around, that limit. Several ways of creating soliton compounds will be discussed, among them soliton molecules which have already been experimentally demonstrated and recently discovered chains of dark solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973).

    Article  ADS  Google Scholar 

  2. L.F. Mollenauer, R.H. Stolen, and J.P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).

    Article  ADS  Google Scholar 

  3. G.P. Agrawal, Nonlinear Fiber Optics, (Academic Press, San Diego, 1995).

    Google Scholar 

  4. A. Hasegawa and Y. Kodama, Solitons in Optical Communications, (Oxford University Press, Oxford, 1995).

    MATH  Google Scholar 

  5. A. Hasegawa and M. Matsumoto, Optical Solitons in Fibers, (Springer, Berlin, 2003).

    Google Scholar 

  6. L.F. Mollenauer and J.P. Gordon, Solitons in Optical Fibers: Fundamentals and Applications, (Elsevier Academic Press, Burlington, MA, 2006).

    Google Scholar 

  7. C.E. Shannon, The Bell Syst. Tech. J. 27, 379 and 623 (1948).

    MATH  MathSciNet  Google Scholar 

  8. J.M. Kahn and K.-P. Ho, Nature (London) 411, 1007 (2001).

    Google Scholar 

  9. P.P. Mitra and J.B. Stark, Nature (London) 411, 1027 (2001).

    Google Scholar 

  10. K.-P. Ho and J.M. Kahn, Channel capacity of WDM systems using constant-intensity Modulation Formats. In: Proc. of Optical Fiber Commun. Conf. 2002 paper ThGG85 (Optical Society of America, Washington, DC, 2002).

    Google Scholar 

  11. J. Tang, J. Lightwave Technol. 24, 2070 (2006).

    Article  ADS  Google Scholar 

  12. C. Xu, X. Liu, and X. Wei, IEEE J. Sel. Topics Quant. El. 18, 281 (2004).

    Article  Google Scholar 

  13. N.N. Akhmediev, G. Town, and S. Wabnitz, Opt. Commun. 104, 385 (1994).

    Article  ADS  Google Scholar 

  14. N.N. Akhmediev and A. Ankiewicz, Chaos 10, 600 (2000).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. V.E. Zakharov and A.B. Shabat, Sov. Phys. JETP 34, 62 (1971).

    ADS  MathSciNet  Google Scholar 

  16. P. Emplit, J.P. Hamaide, F. Reynaud, C. Froehly, and A. Barthelemy, Opt. Comm. 62, 374 (1987).

    Article  ADS  Google Scholar 

  17. D. Krökel, N.J. Halas, G. Giuliani, and D. Grischkowsky, Phys. Rev. Lett. 60, 29 (1988).

    Article  ADS  Google Scholar 

  18. A.M. Weiner, J.P. Heritage, R.J. Hawkins, R.N. Thurston, E.M. Kirschner, D.E. Leaird, and W.J. Tomlinson, Phys. Rev. Lett. 61, 2445 (1988).

    Article  ADS  Google Scholar 

  19. M. Haelterman and P. Emplit, Electron. Lett. 29, 356 (1993).

    Article  Google Scholar 

  20. C.R. Menyuk, J. Opt. Soc. Am. B 10, 1585 (1993).

    Article  ADS  Google Scholar 

  21. Akhmediev, N., Ankiewicz, A. (eds.): Dissipative Solitons, Springer Lect. Notes Phys. 661. Springer, Berlin, Heidelberg (2005)

    Google Scholar 

  22. A. Mees Chaos in feedback systems, In: Chaos, edited by A.V. Holden (Princeton University Press, Princeton, 1986).

    Google Scholar 

  23. A. Schwache and F. Mitschke, Phys. Rev. E 55, 7720 (1997).

    Article  ADS  Google Scholar 

  24. G. Steinmeyer, D. Jaspert, and F. Mitschke, Opt. Comm. 104, 379 (1993).

    Article  ADS  Google Scholar 

  25. G. Steinmeyer, A. Buchholz, M. Hänsel, M. Heuer, A. Schwache, and F. Mitschke, Phys. Rev. A 52, 830 (1995).

    Article  ADS  Google Scholar 

  26. F. Mitschke, G. Steinmeyer, and A. Schwache, Physica D 96, 251 (1996).

    Article  Google Scholar 

  27. G. Steinmeyer, A. Schwache, and F. Mitschke, Phys. Rev. E 53, 5399 (1996).

    Article  ADS  Google Scholar 

  28. F. Mitschke, I. Halama, and A. Schwache, Chaos, Solitons, Fract. 10, 913 (1999).

    Article  Google Scholar 

  29. F. Mitschke and A. Schwache, Quantum Semicl. Opt. 10, 779 (1998).

    Article  ADS  Google Scholar 

  30. B. Malomed, A. Schwache, and F. Mitschke, Fiber Integrated Opt. 17, 267 (1998).

    Article  Google Scholar 

  31. S. Rutz and F. Mitschke, J. Optics B: Quant. Semiclass. Opt. 2, 364 (2000).

    Article  ADS  Google Scholar 

  32. S. Rutz, T. Körösi, and F. Mitschke, Appl. Phys. B 72, 101 (2001).

    ADS  Google Scholar 

  33. G. Steinmeyer and F. Mitschke, Appl. Phys. B 62, 367 (1996).

    Article  ADS  Google Scholar 

  34. J.H.B. Nijhof, N.J. Doran, W. Forysiak, and F.M. Knox, Electron. Lett. 33, 1726 (1997).

    Article  Google Scholar 

  35. Y. Chen and H.A. Haus, Opt. Lett. 23, 1013 (1998).

    Article  ADS  Google Scholar 

  36. S.K. Turytsin and E.G. Shapiro, Opt. Lett. 23, 682 (1998).

    Article  ADS  Google Scholar 

  37. J.N. Kutz and S.G. Evangelides, Opt. Lett. 23, 685 (1998).

    Article  ADS  Google Scholar 

  38. V.S. Grigoryan and C.R. Menyuk, Opt. Lett. 23, 609 (1998).

    Article  ADS  Google Scholar 

  39. M. Stratmann, M. Böhm, and F. Mitschke, Electron. Lett. 37, 1182–1183 (2001).

    Article  Google Scholar 

  40. M. Stratmann, T. Pagel, and F. Mitschke, Phys. Rev. Lett. 95, 143902 (2005).

    Article  ADS  Google Scholar 

  41. C. Paré and P.-A. Bélanger, Opt. Commun. 168, 103 (1999).

    Google Scholar 

  42. A. Maruta, T. Inoue, Y. Nonaka, and Y. Yoshika, IEEE J. Selec. Top. Quant. Electron. 8, 640 (2002).

    Article  Google Scholar 

  43. J.P. Gordon and L.F. Mollenauer: personal communication; see also I. Galitov, R. Indik, L. Mollenauer, M. Stepanov, P.M.Lusknikov, Opt. Lett. 32, 605 (2007).

    Google Scholar 

  44. M. Stratmann and F. Mitschke, Phys. Rev. E 72, 066616 (2005).

    Article  ADS  Google Scholar 

  45. K.J. Blow and N.J. Doran, Physics Lett. 107A, 55 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  46. D. Foursa and P. Emplit, Phys. Rev. Lett. 77, 4011 (1996).

    Article  ADS  Google Scholar 

  47. D.Y. Tang, W.S. Man, H.Y. Tam, and P.D. Drummond, Phys. Rev. A 64, 033814 (2001).

    Article  ADS  Google Scholar 

  48. D.Y. Tang, B. Zhao, D.Y. Chen, C. Lu, W.S. Man, and H.Y. Tam, Phys. Rev. A 68, 0013816 (2003).

    Article  ADS  Google Scholar 

  49. Ph. Grelu, F. Belhache, F. Gutty, and J.-M. Soto-Crespo, Opt. Lett. 27, 966 (2002).

    Article  ADS  Google Scholar 

  50. N.H. Seong and D.Y. Kim, Opt. Lett. 27, 1321 (2002).

    Article  ADS  Google Scholar 

  51. N.N. Akhmediev, A. Ankiewicz, and J.M. Soto-Crespo, J. Opt. Soc. Am. B 15, 515 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  52. Y. Kodama, S. Kumar, and A. Maruta, Opt. Lett. 22, 1689 (1997).

    Article  ADS  Google Scholar 

  53. T.-S. Yang and W.L. Kath, Physica D 149, 80 (2001).

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Mitschke .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mitschke, F. (2008). Compounds of Fiber-Optic Solitons. In: Dissipative Solitons: From Optics to Biology and Medicine. Lecture Notes in Physics, vol 751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78217-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78217-9_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78216-2

  • Online ISBN: 978-3-540-78217-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics