Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 751))

  • 1820 Accesses

Abstract

Building upon nonlinearity, dispersion and dissipation (in most cases including an appropriate input–output energy balance), we offer a discussion of a rich panoply of mathematical model equations whose solutions are dissipative solitons. The presentation is made by first introducing heuristic arguments and subsequently developing appropriate long-wave expansions to account for the phenomena involved in the most significant way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.A. Nepomnyashchy, M.G. Velarde, and P. Colinet, Interfacial Phenomena and Convection, (Chapman 8 Hall/CRC, London, 2002), Chapter 5.

    MATH  Google Scholar 

  2. V.I. Nekorkin and M.G. Velarde, Synergetic Phenomena in Active Lattices. Patterns, Waves, Solitons, Chaos, (Springer, Berlin, 2002).

    MATH  Google Scholar 

  3. X.-L. Chu and M.G. Velarde, Phys. Rev. A 43, 1094 (1991).

    Article  ADS  Google Scholar 

  4. A.N. Garazo and M.G. Velarde, Phys. Fluids A 3, 2295 (1991).

    Article  MATH  ADS  Google Scholar 

  5. A.A. Nepomnyashchy and M.G. Velarde, Phys. Fluids 6, 187 (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. J.V. Boussinesq, Mem. Presentes par Divers Savants a l’Acad. Sci. Inst. France (Paris) 23, 1 (1877).

    Google Scholar 

  7. D.J. Korteweg and G. de Vries, Phil. Mag. 39, 422 (1895).

    Google Scholar 

  8. J. Topper and T. Kawahara, J. Phys. Soc. Jpn 44, 663 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  9. T. Kawahara, Phys. Rev. Lett. 51, 381 (1983).

    Article  ADS  Google Scholar 

  10. T. Kawahara and S. Toh, Phys. Fluids 28, 1636 (1985).

    Article  ADS  Google Scholar 

  11. T. Kawahara and S. Toh, Phys. Fluids 31, 2103 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  12. C. Elphick, G.R. Ierley, O. Regev, et al., Phys. Rev. A 44, 1110 (1991).

    Article  ADS  Google Scholar 

  13. N.A. Kudryashov, Phys. Lett. A 147, 287 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  14. H.-C. Chang, E.A. Demekhin, and D.I. Kopelevich, Physica D 63, 299 (1993).

    Article  MATH  ADS  Google Scholar 

  15. N.M. Ercolani, D.W. McLaughlin, and H.J. Roitner, J. Nonlinear Sci. 3, 477 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. A.A. Nepomnyashchy, Physica D 86, 90 (1995).

    Article  MathSciNet  Google Scholar 

  17. C.I. Christov and M.G. Velarde, Physica D 86, 323 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  18. V.I. Nekorkin and M.G. Velarde, Int. J. Bifurc. Chaos 4, 1135 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  19. A.A. Nepomnyashchy, Trans. Perm State Univ. 369, 114 (1976) (in Russian).

    Google Scholar 

  20. D.E. Bar and A.A. Nepomnyashchy, Physica D 86, 586 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  21. A.Ye. Rednikov, M.G. Velarde, Yu.S. Ryazantsev, A.A. Nepomnyashchy, and V.N. Kurdyumov, Acta Appl. Math. 39, 457 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  22. D.E. Bar and A.A. Nepomnyashchy, Physica D 132, 411 (1999).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. M.G. Velarde, V.I. Nekorkin, and A.G. Maksimov, Int. J. Bifurc. Chaos 5, 831 (1995).

    Article  MATH  Google Scholar 

  24. A. Oron and Ph. Rosenau, Phys. Rev. E 55, R1267 (1997).

    Article  ADS  Google Scholar 

  25. I.L. Kliakhandler, A.V. Porubov, and M.G. Velarde: Phys. Rev. E 62, 4959 (2000).

    Article  ADS  Google Scholar 

  26. A.N. Garazo and M.G. Velarde, Marangoni-driven solitary waves, In Proceedings of the VIII European Symposium on Materials and Fluid Sciences in Microgravity, ESA SP-333 (European Space Agency, Paris 1992), pp. 2295–2300

    Google Scholar 

  27. M. Tajiri and Y. Murakami, J. Math. Phys. 34, 2400 (1993).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. J.W. Miles, J. Fluid Mech. 79, 157 (1977).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. H. Linde, X.-L. Chu, and M.G. Velarde, Phys. Fluids A 5, 1068 (1993); see also H. Linde, M.G. Velarde, W. Waldhelm, and A. Wierschem, J. Colloid Interface Sci. 236, 214 (2001).

    Article  ADS  Google Scholar 

  30. G.-X. Huang, M.G. Velarde, and V.N. Kurdyumov, Phys. Rev. E 57, 5473 (1998).

    Article  ADS  Google Scholar 

  31. W.B. Zimmerman, Excitation of surface waves due to thermocapillary effects on a stable stratified fluid layer, unpublished.

    Google Scholar 

  32. M. Takashima, J. Phys. Soc. Jpn. 50, 2751 (1981).

    Article  ADS  Google Scholar 

  33. M.G. Velarde, A.Ye. Rednikov, and H. Linde, Waves generated by surface-tension gradients and instability. In: Fluid Dynamics at Interfaces (Cambridge University Press, Cambridge 1999) pp. 43–56.

    Google Scholar 

  34. R.T. Goodwin and W.R. Schowalter, Phys. Fluids 7, 954 (1995).

    Article  MATH  ADS  Google Scholar 

  35. M. Takashima, J. Phys. Soc. Jpn. 50, 2745 (1981).

    Article  ADS  Google Scholar 

  36. A.A. Nepomnyashchy, Three-dimensional waves in thin liquid films. In: Fluid Dynamics at Interfaces, edited by W. Shyy, R. Narayanan (Cambridge University Press, Cambridge 1999) pp. 85–98.

    Google Scholar 

  37. V.E. Zakharov and E.A. Kuznetsov, Sov. Phys. JETP 39, 285 (1974).

    ADS  Google Scholar 

  38. M.D. Spektor, Sov. Phys. JETP 61, 104 (1988).

    MathSciNet  Google Scholar 

  39. M.A. Allen and G. Rowlands, J. Plasma Phys. 53, 63 (1995).

    Article  ADS  Google Scholar 

  40. P. Frycz and E. Infeld, Phys. Rev. Lett. 63, 384 (1989).

    Article  ADS  Google Scholar 

  41. Y. Kodama and M.J. Ablowitz, Stud. Appl. Math. 64, 225 (1981).

    MATH  ADS  MathSciNet  Google Scholar 

  42. S. Toh, H. Iwasaki, and T. Kawahara, Phys. Rev. A 40, 5472 (1989).

    Article  ADS  Google Scholar 

  43. A.L. Frenkel and I. Indireshkumar, Derivation and simulations of evolution equations of wavy film flows. In: Mathematical Modeling and Simulation in Hydrodynamic Stability, edited by D.N. Riahi, (World Scientific, Singapore, 1996) pp. 35–81.

    Google Scholar 

  44. T. Ogawa and C.-F. Liu, Physica D 108, 277 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. A.A. Nepomnyashchy, Fluid Dyn. 9, 354 (1974).

    Article  ADS  Google Scholar 

  46. A.A. Nepomnyashchy, Three-dimensional spatially periodic motions in a liquid film flowing down a vertical plane. Hydrodynamics, pt 7, 43–52 (Perm, 1974).

    Google Scholar 

  47. A.A. Nepomnyashchy, Trans. Perm State Univ. 316, 91 (1974) (in Russian).

    Google Scholar 

  48. H.-C. Chang, M. Cheng, E.A. Demekhin, and D.I. Kopelevich, J. Fluid Mech. 270, 251 (1994)

    Article  MATH  ADS  Google Scholar 

  49. B.I. Cohen, J.A. Krommes, W.M. Tang, and M.N. Rosenbluth, Nucl. Fusion 16, 971 (1976)

    Article  ADS  Google Scholar 

  50. U. Frisch, Z.S. She, and O. Thual, J. Fluid Mech. 168, 221 (1986).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. V.I. Petviashvili and O.Yu. Tsvelodub, Sov. Phys. Dokl. 23, 117 (1978).

    ADS  Google Scholar 

  52. H.-C. Chang, Ann. Rev. Fluid Mech. 26, 103 (1994).

    Article  ADS  Google Scholar 

  53. E.A. Demekhin and V.Ya. Shkadov, Fluid Dyn. 19, 689 (1984).

    Google Scholar 

  54. Yu.Ya. Trifonov, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 5, 109 (1990) (in Russian).

    Google Scholar 

  55. S. Kalliadasis, C. Ruyer-Quil, B. Scheid, and M.G. Velarde, Film Flows, Wave Instabilities and Heat Transfer (Springer-Verlag, London) (to be Published).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.G. Velarde .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Velarde, M., Nepomnyashchy, A. (2008). Solitons in Viscous Flows. In: Dissipative Solitons: From Optics to Biology and Medicine. Lecture Notes in Physics, vol 751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78217-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78217-9_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78216-2

  • Online ISBN: 978-3-540-78217-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics