Skip to main content

Collective Focusing and Modulational Instability of Light and Cold Atoms

  • Chapter
  • First Online:
Dissipative Solitons: From Optics to Biology and Medicine

Part of the book series: Lecture Notes in Physics ((LNP,volume 751))

Abstract

A self-consistent model for the coupled dynamics of cold atoms and near-resonant light fields is formulated. The model is shown to predict several novel phenomena, including collective self-focusing of light and atoms, stable dissipative atom–optical solitons and modulational instability under conditions of optical self-defocusing. Experimental studies using cold Cs atoms in a magneto-optical trap suggest the presence of atomic modulational instability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Saffman, Self-induced dipole force and filamentation instability of a matter wave, Phys. Rev. Lett. 81, 65 (1998).

    Article  ADS  Google Scholar 

  2. M. Saffman and D.V. Skryabin, Coupled propagation of light and matter waves: solitons and transverse instabilities, in Spatial Solitons, edited by S. Trillo and W.E. Torruellas, (Springer, Berlin, 2001).

    Google Scholar 

  3. A.P. Kazantsev, G.I. Surdutovich, and V.P. Yakovlev, Mechanical Action of Light on Atoms, (World Scientific, Singapore, 1990).

    Google Scholar 

  4. Akhmediev, N., Ankiewicz A. (Eds.): Dissipative Solitons, Lect. Notes Phys. 661. Springer, Berlin (2005)

    MATH  Google Scholar 

  5. H.J. Metcalf and P. van der Straten, Laser Cooling and Trapping, (Springer, New York, 1999).

    Google Scholar 

  6. G. Grynberg and C. Robilliard, Cold atoms in dissipative optical lattices, Phys. Rep. 355, 335 (2001).

    Article  ADS  Google Scholar 

  7. K.M. O’Hara, S.R. Granade, M.E. Gehm, and J.E. Thomas, Loading dynamics of CO2 laser traps, Phys. Rev. A 63, 043403 (2001).

    Article  ADS  Google Scholar 

  8. T.W. Hodapp, C. Gerz, C. Furtlehner, C.I. Westbrook, W.D. Phillips, and J. Dalibard, Three-dimensional spatial diffusion in optical molasses, Appl. Phys. B 60, 135 (1995).

    Article  ADS  Google Scholar 

  9. S. Gatz and J. Herrmann, Soliton propagation in materials with saturable nonlinearity, J. Opt. Soc. Am. B 8, 2296 (1991).

    Article  ADS  Google Scholar 

  10. Yu.L. Klimontovich and S.N. Luzgin, Possibility of combined self-focusing of atomic and light beams, Pis’ma Zh. Eksp. Teor. Fiz. 30, 645 [JETP Lett. 30, 610] (1979). The condition given for mutual focusing differs by a factor of 2 from our eq. ([13]).

    Google Scholar 

  11. S. Guibal, C. Mennerat-Robilliard, D. Larousserie, C. Triché, J.-Y. Courtois, and G. Grynberg, Radiation pressure in a rubidium optical lattice: An atomic analog to the photorefractive effect Phys. Rev. Lett. 78, 4709 (1997).

    Article  ADS  Google Scholar 

  12. M. Saffman, G. McCarthy, and W. Królikowski, Two-dimensional modulational instability in photorefractive media, J. Opt. B: Quantum Semiclass. Opt. 6, S397 (2004).

    Article  ADS  Google Scholar 

  13. Y. Wang and M. Saffman, Experimental study of nonlinear focusing in a magneto-optical trap using a Z-scan technique, Phys. Rev. A 70, 013801 (2004).

    Article  ADS  Google Scholar 

  14. Y. Wang, Nonlinear self-focusing in cold Cesium atoms, Ph.D. thesis University of Wisconsin (2005).

    Google Scholar 

  15. A.G. Truscott, D. Baleva, N.R. Heckenberg, and H. Rubinsztein-Dunlop, Short-term spatial diffusion in σ+ - σ- optical molasses, Opt. Commun. 145, 81 (1998).

    Article  ADS  Google Scholar 

  16. D. Boiron, C. Mennerat-Robilliard, J.-M. Fournier, L. Guidoni, C. Salomon, and G. Grynberg, Trapping and cooling cesium atoms in a speckle field, Eur. Phys. J. D 7, 373 (1999).

    Article  ADS  Google Scholar 

  17. G.A. Muradyan, Y. Wang, W. Williams, and M. Saffman, Absolute instability and pattern formation in cold atomic vapors, in 2005 Nonlinear Guided Waves Topical Meeting Technical Digest, paper ThB29, (Dresden, Germany, September, 2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saffman .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saffman, M., Wang, Y. (2008). Collective Focusing and Modulational Instability of Light and Cold Atoms. In: Dissipative Solitons: From Optics to Biology and Medicine. Lecture Notes in Physics, vol 751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78217-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78217-9_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78216-2

  • Online ISBN: 978-3-540-78217-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics