Skip to main content

Model-based method for the assessment of global change in the nature—Society system

  • Chapter
Global Climatology and Ecodynamics

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

Numerous problems arising from the interaction between nature and society are considered by various authors (Adamenko and Kondratyev, 1999; Bartsev et al., 2003; Degermendzhi and Bartsev, 2003; Gorshkov et al., 2000; Kondratyev. 1990, Kondratyev. 1992, Kondratyev. 2002, Kondratyev. 2004a; Kondratyev et al., 2003a, Kondratyev et al., 2003b, Kondratyev et al., 2003c, Kondratyev et al., 2004a, Kondratyev et al., 2004b, Kondratyev et al., 2006b). The growing number of published works dedicated to global environmental change leads to the realization that protection of the natural environment has become an urgent problem. The question of working out the principles underlying coevolution of human beings and nature is being posed with ever-increasing persistence. Scientists in many countries are making attempts to find ways of formulating laws governing human processes acting on the environment. Numerous national and international programs of biosphere and climate studies contribute to the quest for means of resolving the confliet between human society and nature. However, attempts to find efficient methods of regulating human activity on the global scale encounter many difficulties. The major difficulty is the absence of an adequate knowledge base pertaining to climatic and biospheric processes as well as the largely incomplete state of the databases concerning global processes occurring in the atmosphere, in the ocean, and on land. Another difficulty is the inability of modern science to formulate the requirements that must be met by the global databases necessary for reliable evaluation of the state of the environment and forecasting its development for sufficiently long time intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamenko V.N. and Kondratyev K.Ya. (1999). Global climate change and its empirical diagnostics. Anthropogenic Impact on Northern Nature and Its Consequences. Kola Center of the Russian Acad. Sci., Apatity, pp. 17–35 [in Russian].

    Google Scholar 

  • Alexandroy G. and Oikawa T. (2002). TsuBiMo: A biosphere model of the CO2-fertilization effect. Climate Res., 19, 265–270.

    Article  Google Scholar 

  • Alexandrov G.A., Yamagata Y., Saigusa N., and Oikawa T. (2005). Long-term carbon exchange at the Takayama. Agricultural and Forest Meteorology, 134(1/4), 135–142.

    Article  Google Scholar 

  • Aloyan A.E. (2004). Numerical modelling of minor gas constituents and aerosols in the atmosphere. Ecological Modelling, 179 163–175.

    Article  Google Scholar 

  • Bacastow R. (1981). Numerical evaluation of the evasion factor. Carbon Cycle Modeling, SCOPE-16. John Wiley & Sons, New York, pp. 95–101.

    Google Scholar 

  • Barenbaum A.S. (2002). Galaxy. Solar System. The Earth: Subordinate Processes and Evolution. Geos. Moscow. 393 pp. [in Russian].

    Google Scholar 

  • Barenbaum A.S. (2004). Mechanism for the formation of gas and oil accumulation. Annals of Acad. Sci., 399(6), 1–4 [in Russian].

    Google Scholar 

  • Bartsev S.I., Degermendzhy A.G., and Erokhin D.V. (2003). Global generalized models of carbon dioxide dynamics. Problems of the Environment and Natural Resources, 12, 11–28 [in Russian].

    Google Scholar 

  • Bazilevich N.I. and Rodin L.E. (1967). The map-schemes of productivity and of the biological cycle of the most significant types of land vegetation. Bull. of the All-Unión Geographical Soc., 99(3), 190–194 [in Russian].

    Google Scholar 

  • Björkstrom A. (1979). A model of CO2 interaction between atmosphere, ocen, and land biota. Global Carbon Cycle. SCOPE-13. John Willey & Sons, New York, pp. 403–458.

    Google Scholar 

  • Bodenbender J., Wassmann R., Papen H., and Rennenberg H. (1999). Temporal and spatial variation of sulfur-gas-transfer between coastal marine sediments and the atmosphere. Atmospheric Environment, 33(21) 3487–3502.

    Article  Google Scholar 

  • Borisov P.M. (2005). Can Humankind Change Climate? Science, Moscow, 270 pp. [in Russian].

    Google Scholar 

  • Boysen M. (ed.) (2000). Biennial Report 1998 & 1999. Potsdam Institute for Climate Impact Research, Potsdam, Germany, 130 pp.

    Google Scholar 

  • Canadel I.G., Dickinson R., Hibbard K., Raupach M., and Young O. (eds.) (2003). Global Carbon Project: The Science Framework and Implementation, Report No. 1. Earth System Science Partnership, Canberra, 69 pp.

    Google Scholar 

  • Chen W., Chen J., and Cihlar J. (2000). An integrated terrestrial ecosystem carbon-budget model based on changes in disturbance, climate, and atmospheric chemistry. Ecological Modelling, 135(1), 55–79.

    Article  Google Scholar 

  • Collatz G.J., Bounoua L., Los S.O., Randall D.A., Fung I.Y., and Sellers P.J. (2000). A mechanism for the influence of vegetation on the response of the diurnal temperature range to changing climate. Geophys. Res. Lett., 27(20), 3381–3384.

    Article  Google Scholar 

  • Corcoran P.P. (ed.) (2005). The Earth Charter in Action: Toward a Sustainable World. Koninklijk Instituut voor de Tropen, Amsterdam, The Netherlands, 192 pp.

    Google Scholar 

  • Degermendzht A.G. (1987). Objective laws for combined species formation under the modeling of water ecosystems (by the example of Krasnoyarsk’s reservoir). Doctoral dissertation in biophysics, Institute of Biophysics, Siberian Brach of Russian Academy of Sciences, Krasnoyarsk, 510 pp.

    Google Scholar 

  • Degermendzhy A.G. and Bartsev S.I. (2003). Global small-scale models of dynamics and stability of the biosphere. Problems of the Environment and Natural Resources, 7, 32–49 [in Russian].

    Google Scholar 

  • Demirchian K.S. and Kondratyev K.Ya. (1999). Scientific validity of predicted impacts of energetics on climate. Bull. of Russian Acad. Sci. Energetics, 6, 3–46 [in Russian].

    Google Scholar 

  • Demirchian K.S., Demirchian K.K., Danilevich Ya.B., and Kondratyev K.Ya. (2002). Global climate warming, energetics and geopolicy. Annals of RAS: Energetics, 3, 221–235 [in Russian].

    Google Scholar 

  • Dore S.F., Likas R., Sadler D.W., and Karl D.M. (2003). Climate-driven changes to the atmospheric CO2 sink in the subtropical North Pacific Ocean. Nature (U.K.), 424(6950), 754–757.

    Article  Google Scholar 

  • Ehhalt D.H. (1981). Chemical coupling of the nitrogen, sulphur, and carbon cycles in the atmosphere. In: G.E. Likens (ed.), Some Perspectives of the Major Biogeochemical Cycles. Elsevier, Amsterdam, pp. 81–91.

    Google Scholar 

  • EPA (2001). Non-CO 2 Greenhouse Gas Emissions from Developed Countries: 1999–2010, EPA-430-R-01-007. U.S. Environmental Protection Agency, Washington, D.C., 79 pp.

    Google Scholar 

  • Friend A.D. (1998) Parametrization of a global daily weather generator for terrestrial ecosystem modelling. Ecological Modelling, 109(2), 121–140.

    Article  Google Scholar 

  • Gorshkov V.G., Gorshkov V.V., and Makarieva A.M. (2000). Biotic Regulation of the Environment: Key Issues of Global Change. Springer/Praxis. Chichester, U.K., 367 pp.

    Google Scholar 

  • Hales B., Takahashi T., and Bandstra L. (2005). Atmospheric CO2 uptake by a coastal upwelling system. Global Biogeochemical Cycles, 19(GB1009), doi: 10. 1029/2004GB002295, 1–11.

    Google Scholar 

  • Hasegawa Y. and Kasagi N. (2001). The effect of Schmidt number on air water interface mass transfer. Proceedings of the Fourth International Conference on Multiphase Flow. New Orleans. May 27–June 1, 2001, University of Nottingham, New Orleans, Louisiana. pp. 296–292.

    Google Scholar 

  • Hasegawa Y. and Kasagi N. (2005). Turbulent mass tranfer mechanism across a contaminated air water interface. Proceeding of the Fourth International Symposium on Turbulence and Shear Flow Phenomena (TSFP-4), Williamsburg, Virginia, June 27–29, 2005, pp. 971–976.

    Google Scholar 

  • Holdren J.P. (2003). Environmental change and human condition. Bull. Amer. Acad. Arts. Sci., New York, 57(1), 25–31.

    Google Scholar 

  • Holmberg M., Rankinen K., Johansson M., Forsius M., Kleemola S., Ahonen J., and Syri S. (2000). Sensitivity of soil acidification model to deposition and forest growth. Ecological Modelling, 135(2/3), 311–325.

    Article  Google Scholar 

  • Houghton J.T., Ding Y., Griggs D.J., Noguer M., Van der Linden P.J., Dai X., Masskell K., and Johnson C.A. (2001). Climate Change 2001: The Scientific Basis (contribution of WGl to the third assessment report of the IPCC). Cambridge University Press. Cambridge. U.K., 881 pp.

    Google Scholar 

  • IPCC (2007). Climate Change 2007: The Physical Science Basis. WMO/UNEP. Geneva, Switzerland, 18 pp.

    Google Scholar 

  • Kiehl J.T. and Gent P.R. (2004). The Community Climate System Model, Version 2. J. Climate. 17, 3666–3682.

    Article  Google Scholar 

  • Kondratyev K.Ya. (1990). Key Problems of Global Ecology. ARISTI, Moscow, 454 pp. [in Russian].

    Google Scholar 

  • Kondratyev K.Ya. (1992). Global Climate. Science, St. Petersburg, 359 pp. [in Russian].

    Google Scholar 

  • Kondratyev K.Ya. (1998). Multidimensional Global Change. Wiley/Praxis, Chichester, U.K., 761 pp.

    Google Scholar 

  • Kondratyev K.Ya. (1999a). Climatic Effects of Aerosols and Clouds. Springer/Praxis, Chichester, U.K., 264 pp.

    Google Scholar 

  • Kondratyev K.Ya. (1999b). Ecodynamics and Geopolities, Vol. 1: Global Problems. St. Petersburg State University, St. Petersburg, 1, 040 pp. [in Russian].

    Google Scholar 

  • Kondratyev K.Ya. (2000a). Earth researches from space: Scientific plane of the EOS system. Earth Research from Space (Moscow), 3, 82–91 [in Russian].

    Google Scholar 

  • Kondratyev K.Ya. (2000b). Global changes on the verge of two millennia. Herald of Russian Academy of Sciences, 70(9), 788–796 [in Russian].

    Google Scholar 

  • Kondratyev K.Ya. (2002). Global climate change: Reality, hypotheses, and fiction. Research of the Earth from Space, 1, 3–23 [in Russian].

    Google Scholar 

  • Kondratyev K.Ya. (2004a). Global climate change: Observational data and numerical modeling results. Research of the Earth from Space, 1, 3–25 [in Russian].

    Google Scholar 

  • Kondratyev K.Ya. (2004b). Global climate change: Unsolved problems. Metcorology and Hydrology, 4, 93–119 [in Russian].

    Google Scholar 

  • Kondratyev K.Ya. and Krapivin V.F. (2001). Global dynamics of basic land ecosystems. Research of the Earth from Space, 4, 3–12 [in Russian].

    Google Scholar 

  • Kondratyev K.Ya. and Krapivin V.F. (2003). Global change: Real and possible in the future. Research of the Earth from Space, 4, 1–10 [in Russian].

    Google Scholar 

  • Kondratyev K. Ya. and Krapivin V.F. (2004). Modeling the Global Carbon Cycle, Physics-Mathematics, Moscow 335 pp. [in Russian].

    Google Scholar 

  • Kondratyev K. Ya. and Losev K. S. (2002). Present problems of global civilization development and its possible perspectives. Earth Research from Space, 2, 3–23 [in Russian].

    Google Scholar 

  • Kondratyev K. Ya. and Varotsos C.A. (2000). Atmospheric Ozone Variability: Implications for Climate Change, Human Health, and Ecosystems. Springer/Praxis, Chichester, U.K., 758pp.

    Google Scholar 

  • Kondratyev K. Ya., Krapivin V. F., and Pshenin E.S. (2000). Concept of the regional geoinformation monitoring. Earth Research from Space (Moscow), 6, 3–10 [in Russian].

    Google Scholar 

  • Kondratyev K. Ya., Krapivin V. F., and Phillips G. W. (2002). Global Environmental Change: Modelling and Monitoring. Springer-Verlag, Heidelberg, 319 pp.

    Book  Google Scholar 

  • Kondratyev K. Ya., Krapivin V.F., and Savinykh V.P. (2003a). Perspectives of Civilization Development: Multidimensional Analysis. Logos, Moscow, 574pp. [in Russian].

    Google Scholar 

  • Kondratyev K. Ya., Krapivin V.F., and Varotsos C.A., (2003b). Global Carbon Cycle and Climate Change, Springer/Praxis, Chichester, U.K., 343 pp.

    Google Scholar 

  • Kondratyev K. Ya., Losev K.S., Ananicheva M.D., and Chesnokova I.V. (2003c). Price of Russian ecological service. Herald of Russian Academy of Sci., 73(1), 3–10 [in Russian].

    Google Scholar 

  • Kondratyev K. Ya., Krapivin V.F., Varotsos C.A., and Savinikh V.P. (2004a). Global Ecodynamics. A Multidimensional Analysis. Springer/Praxis, Chichester, U.K., 649 pp.

    Book  Google Scholar 

  • Kondratyev K. Ya., Losev K. S., Ananicheva M.D., and Chesnokova I.V. (2004b) Stability of Life on Earth. Springer/Praxis, Chichester, U.K., 152 pp.

    Google Scholar 

  • Kondratyev K. Ya., Ivlev L.S., Krapivin V.F., and Varotsos C.A. (2006a). Atmospheric Aerosol Properties: Formation, Processes and Impacts. Springer/Praxis, Chichester, U.K., 572 pp.

    Google Scholar 

  • Kondratyev K.Ya., Krapivin V.F., and Varotsos C.A. (2006b). Natural Disasters as Interactive Components of Global Ecodynamics. Springer/Praxis, Chichester, U.K., 620pp.

    Google Scholar 

  • Korgenevsky A.V., Krapivin V.F., and Cherepenin V.A. (1989). Modeling the global processes of the magnetosphere. In: E.P. Novitchikhin (ed.) Methods of Informatics in Radiophysical Investigations of Environment. Nauka, Moscow, pp. 25–43 [in Russian].

    Google Scholar 

  • Krapivin V.F. (1978). On the Theory of Complex System Survivability Science, Moscow, 248pp. [in Russian].

    Google Scholar 

  • Krapivin V.F. (1993). Mathematical model for global ecological investigations Ecological Modelling, 67(2/4), 103–127.

    Article  Google Scholar 

  • Krapivin V.F. (1996). The estimation of the Peruvian current ecosystem by a mathematical model of biosphere. Ecological Modelling, 91(1), 1–14

    Article  Google Scholar 

  • Krapivin V.F. (2000a). Biospheric balance of oxygen and its modeling. Problems of Environment and Natural Resources, 10, 15–20, [in Russian].

    Google Scholar 

  • Krapivin V.F. (2000b). The model of global nitrogen cycle. Problems of Environment and Natural Resources, 10, 3–15 [in Russian].

    Google Scholar 

  • Krapivin V.F. (2000c). Simulation model of biogeochemical cycle of phosphorus in the biosphere. Problems of Environment and Natural Resources, 10, 26–30 [in Russian].

    Google Scholar 

  • Krapivin V.F., and Chukhlantsev A.A. (2004). Remote UHF radiometric sounding of soil and vegetation in the context of global environmental change. Ecological Systems and Devices, 9, 37–45 [in Russian].

    Google Scholar 

  • Krapivin V.F. and Kondratyev K.Ya. (2002). Global Environmental Change: Ecoinformatics. St. Petersburg State University, St. Petersburg, 724 pp. [in Russian].

    Google Scholar 

  • Krapivin V.F., and Nazaryan N.A. (1997). Mathematical model for investigations of the global sulphur cycle. Mathematical Modeling (Moscow), 9(8), 36–50 [in Russian].

    Google Scholar 

  • Krapivin V.F., and Potapov I.I. (2006). Monitoring of the chemical element cycles in the environment. Problems of the Environment and Natural Resources, 12, 3–16.

    Google Scholar 

  • Krapivin V.F., Svirezhev Yu.M., and Tarko A.M. (1982). Mathematical Modeling of Global Biospheric Processes, Science, Moscow, 272 pp. [in Russian].

    Google Scholar 

  • Logofet D.O. (2002). Matrix population models: Construction, analysis and interpretation. Ecological Modelling, 148(3), 307–310.

    Article  Google Scholar 

  • Lomborg B. (2001). The Sceptical Environmentalist: Measuring the Real State of the World. Cambridge University Press, Cambridge, U.K., 496 pp.

    Book  Google Scholar 

  • Lomborg B. (ed.) (2004). Global Crisis, Global Solutions. Cambridge University Press, Cambridge, U.K., 670pp.

    Google Scholar 

  • Luceken D.J., Berkowitz C.M., and Easter R.C. (1991). Use of a three-dimensional cloud-chemistry model to study the transatlantic transport of soluble sulfur species. J. Geophys. Res. D., 96(12), 22477–22490

    Article  Google Scholar 

  • Mintzer I.M. (1987). A Matter of Degrees: The Potential for Controlling the Greenhouse Effect. World Resources Institute Research Report No. 15, Washington, D.C., 70pp.

    Google Scholar 

  • Nishida K., Nemani R.R., Glassy J.M., and Running S.W. (2003). Development of an evapotranspiration index from Aqua/MODIS for monitoring surface moisture status. IEEE Trans on Geosci. and Remote Sensing, 41(2), 493–501.

    Article  Google Scholar 

  • Nitu C., Krapivin V.F., and Bruno A. (2000). Intelligent Techniques in Ecology. Printech, Bucharest, 150pp.

    Google Scholar 

  • Nitu C., Krapivin V. F., and Pruteanu E. (2004). Ecoinformatics: Intelligent Systems in Ecology. Magic Print, Onesti, Bucharest, Rumania, 410 pp.

    Google Scholar 

  • Our Changing Planet (2004). The U.S. Climate Change Science Program for Fiscal Years 2004 and 2005. DOE, Washington, D.C., 159pp.

    Google Scholar 

  • Papakyriakou T.N. and McCaughey J.H. (1991). An evaluation of evapotranspiration for a mixed forest. Can. J. Forest. Res., 21(11), 1622–1631.

    Article  Google Scholar 

  • Park S.U., In H.J., and Lee Y.H. (1999). Parametrization of wet deposition of sulfate by precipitation rate. Atmospheric Env., 33(27), 4469–4475.

    Article  Google Scholar 

  • Peng C. (2000). From static biogeographical model to dynamic global vegetation model: A global perspective on modelling vegetation dynamics. Ecological Modelling, 135(1), 33–54.

    Article  Google Scholar 

  • Perrie W., Zhang W., Ren X., and Long Z. (2004). The role of midlatitude storms on air sea—sea exchange of CO2. Geophysical Research Letters, 31(L09306), doi: 10.1029/2003GL019212, 1–4.

    Google Scholar 

  • Power H.C. (2000). Estimating atmospheric turbidity from climate data. Ecological Modelling, 135(1), 125–134.

    Google Scholar 

  • Rochon G.L., Krapivin V.F., Watson M., Fauria S., Tsang F.Y., and Fernandez M. (1996). Remote characterization of the landsea interface: A case study of the Viet-Nam/South China Sea coastal zone. Proceedings of the Second HoChiMinh City Conference on Mechanics. HoChiMinh City, September 24–25, 1996, pp. 72–74.

    Google Scholar 

  • Ronner, U. (1983). Biological Nitrogen Transformations in Marine Ecosystems with Emphasis on Denitrification. Department of Marine Microbiology University of Goteborg, Goteborg, Sweden, 165 pp.

    Google Scholar 

  • Rosen C. (2000). People and Ecosystems: The Fraying Web of Life. Elsevier, Washington, D.C., 250 pp.

    Google Scholar 

  • Sellers P.J., Randall D.A., Collotz G.J., Berry J.A., Field C.B., Dazlich D.A., Zhang C., Collelo G.D., and Bounoua L. (1996). A revised land surface parameterization (SiB2) for atmospheric GCMs, Part 1: Model formulation. J. of Climate, 9(4), 676–705.

    Article  Google Scholar 

  • Starke L. (ed.) (2004). State of the World, 2004: Progress towards a Sustainable Society. Earthscan, London, 246 pp.

    Google Scholar 

  • Tarko A.M. (2001). Investigation of global biosphere processes with the aid of a global spatial carbon dioxide cycle model. Sixth International Carbon Dioxide Conference, Tohoku University, Sendai, Japan, Extended Abstract No. 2, pp. 899–902.

    Google Scholar 

  • Tarko A.M. (2005). Numerical Modeling of Anthropogenic Changes of Global Biospheric Processes. Physics-Mathematics, Moscow, 278pp. [in Russian].

    Google Scholar 

  • Wange G. and Archer D.J. (2003). Evaporation of groundwater from arid playas measured by C-band SAR. IEEE Trans. on Geosci. and Remote Sensing, 41(7), 1641–1650.

    Article  Google Scholar 

  • Watson R.T., Noble I.R., Bolin B., Ravindranath N.H., Verardo D.J. and Dokken D.J. (eds.). (2000). Land Use, Land-use Change, and Forestry. Cambridge University Press, Cambridge, U.K., 377 pp.

    Google Scholar 

  • Wirtz K.W. (2000). Second order up-scaling: Theory and an exercise with a complex photosynthesis model. Ecological Modelling, 126(1), 59–71.

    Article  Google Scholar 

  • Yasanov N.A. (2003). Climate of Phanerozoe and the greenhouse effect. Herald of the Moscow State University, Ser. 4: Geology, 6, 3–11 [in Russian].

    Google Scholar 

  • Yokozawa M. (1998). Effects of competition mode on spatial pattern dynamics in plant communities. Ecological Modelling, 106(1), 1–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

Krapivin, V.F., Kelley, J.J. (2009). Model-based method for the assessment of global change in the nature—Society system. In: Global Climatology and Ecodynamics. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78209-4_7

Download citation

Publish with us

Policies and ethics