Skip to main content

Regarding greenhouse explosion

  • Chapter

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

Can our planet Earth become as hot as Venus as a result of runaway accumulation of carbon dioxide in the atmosphere and explosive increasing of the greenhouse effect? This question is reasonable because the Earth’s reservoirs, such as the oceans, biota, and carbonates in the Earth’s crust, contain approximately the same total amount of CO2 as the atmosphere of Venus (Nicholls, 1967). On the other hand, simulations of the radiation regime of the atmosphere of Venus (Kondratyev and Moskalenko, 1985) confirm that the temperature of the lower atmosphere of the planet may be very hot even if the incoming solar flux inside its atmosphere is weaker than the incoming solar flux inside the Earth’s atmosphere. For example, according to observations, the surface temperature of Venus is about 730K (Kondratyev, 1990), in comparison with the annual mean surface temperature of the Earth which is about 288.2K. However, the flux of solar radiation at the top of the atmosphere of Venus is mainly reflected by clouds (due to the high value of the albed of the clouds, about 0.75); thus, the flux of solar radiation incoming to the atmosphere of Venus and heating the surface is about 165 Wm−2 (Kondratyev, 1990; Gorshkov 1995) by comparison with the incoming flux of solar radiation to the atmosphere of the Earth of about 240Wm−2 (Bach. 1987). The reason for the large difference between their surface temperatures is the very strong greenhouse effect on Venus due to the high content of greenhouse gases, mainly carbon dioxide (pressure about 90 atmospheres). in the atmosphere of Venus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe Y. and Matsui T. (1988). Evolution of an impact-generated H2O−CO2 atmosphere and formation of a hot proto-ocean on earth. J. Atmos. Sci., 45, 3081–3101.

    Article  Google Scholar 

  • Anderson G.P., Clough S.A., Kneizys F.X., Cherwynd J.H., and Shettle E.P. (1986). AFGL Atmospheric Constituents Profiles (0–120 km). AFGL-TR-86-0110, Environmental Research Papers No. 954. Air Force Geophysies Laboratory, Hanscom Air Force Base, MA, 46 pp.

    Google Scholar 

  • Asiptsov O.I., Zakharov V.I., and Gribanov K.G. (2000). Observation of explosive absorption phenomenon of CO2 laser radiation 10.6 μm in atmospheric air with admixture of carbon dioxide. Atmospheric and Ocean Optics, 13(11), 905–909.

    Google Scholar 

  • Bach W. (ed.) (1987). Carbon Dioxide in the Atmosphere. Mir, Moscow [in Russian].

    Google Scholar 

  • Bolin B. (ed.) (1987). Greenhouse Effect, Climate Variation and Ecosystems. Mir, Moscow, 231 pp. [in Russian].

    Google Scholar 

  • Budyko M.I. (1968). Glaciation ages origin. Meteorology and Hydrology, 11, 3–12. [in Russian].

    Google Scholar 

  • Budyko M.I. (1969). The effect of solar radiation variations on the climate of the earth. Tellus, 21(5), 611–619.

    Article  Google Scholar 

  • Budyko M.I. (1980). Climate in the Past and Future. Hydrometeoizdat, Leningrad, 320 pp. [in Russian].

    Google Scholar 

  • Chamberlain J. W. (1980). Changes in the planetary heat balance with chemical changes in air. Planetary and Space Science, 28, 1011–1018.

    Article  Google Scholar 

  • Chedin A., Chahine M.T., and Scott N.A. (eds.) (1994), High Spectral Resolution Infrared Remote Sensing for Earth’s Weather and Climate Studies, NATO ASI Series, Series I: Global Environmental Change, Vol. 9. Springer-Verlag, Berlin, pp. 264–271.

    Google Scholar 

  • Clough S.A., Kneizis F.X., and Davies R.W. (1989). Line shape and the water vapour continuum. Atmospheric Research, 23, 229–241.

    Article  Google Scholar 

  • Crowley T.J. and Hyde W.T. (2001). CO2 levels required for deglaciation of a “Near-Snowball” Earth. Geophysical Research Letters, 28(2), 283–286.

    Article  Google Scholar 

  • Franck-Kamenetskii D.A. (1987). Diffusion and Heat Transfer in Chemical Kinetics, Science, Moscow, 265 pp. [in Russian].

    Google Scholar 

  • Golitsyn G.S. and Mokhov I.I. (1978a). Stability and external properties of climate models. Proceedings of USSR Academy of Sciences, Physics of Atmosphere and Ocean, 14(8), 271–277 [in Russian].

    Google Scholar 

  • Golitsyn G.S. and Mokhov I.I. (1978b). Evaluation of sensitivity and role of cloudiness in simple climate models. Proceedings of USSR Academy of Sciences, Physics of Atmosphere and Ocean, 14(8), 803–814.

    Google Scholar 

  • Goody R. and Abdou W. (1996). Reversible and irreversible sources of radiation entropy. Q. J. Roy. Meteorol. Soc., 122, 483–494.

    Article  Google Scholar 

  • Gorham E. (1991). Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecol. Appl., 1, 182–195.

    Article  Google Scholar 

  • Gorshkov V.G. (1994). Thermal stability of climate. Proceedings of Russian Geographical Society, 216(3), 26–35 [in Russian].

    Google Scholar 

  • Gorshkov V.G. (1995). Physical and Biological Principles of Stability of Life. ARISTI, Moscow, 470 pp. [in Russian].

    Book  Google Scholar 

  • Gribanov K.G. and Zakharov V.I. (1994). Radiation regimes of Earth’s atmosphere taking into account threshold absorption of thermal radiance in the range of atmospheric transparency window 8–13 μm. Computational Technologies, 3(8), 62–71 [in Russian].

    Google Scholar 

  • Gribanov K.G., Zakharov V.I., Tashkun S.A., and Tyuterev V.G. (2001). A new software tool for radiative transfer calculations and its application to IMG/ADEOS data. J. Quant. Spectrosc. Radiative Transfer, 68(4), 435–451.

    Article  Google Scholar 

  • Haken H. (1984). Advanced Synergetics. Springer-Verlag, Berlin, 289 pp.

    Google Scholar 

  • Ingersoll A.P. (1969). The runaway greenhouse: A history of water on Venus. J. Atmos. Sci., 26, 1191–1198.

    Article  Google Scholar 

  • Karnaukhov A.V. (1994). Regarding the stability of chemical composition of the atmosphere and thermal balance of the Earth. Biophysics, 39(1), 148–152 [in Russian].

    Google Scholar 

  • Karol I.L. (1988). Introduction to the Earth’s Climate Dynamics. Hydrometeoizdat, Leningrad, 215 pp. [in Russian].

    Google Scholar 

  • Kasting J.F. (1988). Runaway and moist greenhouse atmospheres and the evolution of Larth and Venus. Icarus, 74, 472–494.

    Article  Google Scholar 

  • Komabayashi M. (1967). Discrete equilibrium temperatures of a hypothetical planet with the atmosphere and the hydrosphere of a one component-two phase system under constant solar radiation. J. Meteor. Soc. Japan, 45, 137–139.

    Google Scholar 

  • Komabayashi M. (1968). Conditions for the coexistence of the atmosphere and the oceans. Shizen, 23(2), 24–31.

    Google Scholar 

  • Kondratyev K.Ya. (1990). Planet Mars. Hydrometeoizdat, Leningrad, 367pp. [in Russian].

    Google Scholar 

  • Kondratyev K.Ya. and Moskalenko N.I. (1985). Greenhouse Effect of the Atmospheres of Planets. ARISTI, Moscow, 157 pp. [in Russian].

    Google Scholar 

  • Kondratyev K.Ya. and Timofeyev Yu. M. (1970). Thermal Sounding of the Earth from Space. Hydrometeoizdat, Leningrad, 421 pp. [in Russian].

    Google Scholar 

  • Lenton T.M. (2000). Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model. Tellus, 52B, 1159–1188.

    Google Scholar 

  • Lovelock J. (2004). Something nasty in the greenhouse. Atmos. Sci. Lett., 5, 108–109.

    Article  Google Scholar 

  • Makarieva A.M. and Gorshkov V.G. (2001). Greenhouse effect and problem of stability of annual mean surface temperature of the globe. Proceedings of RAS, 346(6), 810–814 [in Russian].

    Google Scholar 

  • Manabe S. and Stouffer R.J. (1993). Century-scale effects of increasing atmospheric CO2 on the ocean-atmosphere system. Nature, 364, 215–218.

    Article  Google Scholar 

  • Matveev L.T. (1984). The Course of General Meteorology (Physics of Atmosphere). Hydrometeoizdat, Leningrad, 751 pp. [in Russian].

    Google Scholar 

  • Matveev L.T. (1991). Theory of Atmospheric Circulation and Climate of the Earth, Hydrometeoizdat, Leningrad, 340 pp. [in Russian].

    Google Scholar 

  • MeGuffie K. and Henderson-Sellers A. (1997). A Climate Modelling Primer. John Wiley & Sons, Chichester, U.K., 178 pp.

    Google Scholar 

  • McKay C.P., Lorenz R.D., and Linine J.I. (1999). Analytic solutions for the antigreenhouse effect: Titan and the early Earth. Icarus, 137, 56–61.

    Article  Google Scholar 

  • Nakajima S., Hayashi Y., and Abe Y. (1992). A study on the “Runaway Greenhouse Effect” with a One-Dimensional Radiative-Convective Equilibrium Model. J. Atmos. Sci., 49(23), 2256–2266.

    Article  Google Scholar 

  • Nicholls G.D. (1967). In Mantles of the Earth and Terrestrial Planets. Intersience, New York, 285 pp.

    Google Scholar 

  • Nicolis C. (1992). Long Term Climate Transitions and Stochastic Resonance. Institut Royal Météorologique de Belgique, Brussels, 54 pp.

    Google Scholar 

  • North G.R., Cahalan R.F., and Coackley J.A. (1981). Energy balance climate models. Rev. Geophys. Space Phys., 19(1), 91–121.

    Article  Google Scholar 

  • Rothmann L.S., Barbe A., Chris Benner D., Brown L.R., Camy-Peyret C., Carleer M.R., Chance K., Clerbaux C., Dana V., Devi V.M. et al. (2003). The HITRAN molecular spectroscopic database: Edition of 2000 including updates through 2001. J. Quant. Spectrosc. Radiative Transfer, 82, 5–44.

    Article  Google Scholar 

  • Sellers W.D. (1969). A global climatic model based on the energy balance of the Earth atmosphere system. J. Appl. Met., 8, 392–398.

    Article  Google Scholar 

  • Shmelev V.M., Zakharov V.I., and Nesterenko A.I. (1989). Explosive absorption of power CO2 laser beams in the atmosphere. Atmospheric Optics, 2(6), 489–496.

    Google Scholar 

  • Stephens G.L. and O’Brien D.M. (1993). Entropy and climate, 1: ERBE observations of the entropy production of the earth. Q. J. Roy. Meteorol. Soc., 119, 121–152.

    Article  Google Scholar 

  • Vinnikov K.Ya. (1986). Climate Sensitivity. Hydrometeoizdat, Leningrad, 224 pp. [in Russian].

    Google Scholar 

  • Zakharov V.I., Prokop’ev V.E., Shmelev V.M, and Gribanov K.G. (1991a). Stability of the Present Thermal State of the Earth (Preprint No. 7). Tomsk Science Center of Siberian Branch of Academy of Science of U.S.S.R, 15 pp. [in Russian].

    Google Scholar 

  • Zakharov V.I., Shmelev V.M., and Nesterenko A.I. (1991b). Explosive absorption of CO2 laser radiation 10.6 μm in the atmosphere. J. de Phys., IV, 775–781.

    Google Scholar 

  • Zakharov V.I., Gribanov K.G., Prokop’ev V.E., and Shmelev V.M. (1992). Influence of atmospheric transparency window 8–13 μm on stability of the thermal state of the Earth. Atomic Energy, 72(1), 98–102 [in Russian].

    Article  Google Scholar 

  • Zakharov V.I., Shmelev V.M., Gribanov K.G., and Prokop’ev V.E. (1993). Influence of atmospheric transparency window 8–13 micron on thermal stability of the Earth atmosphere. Proceedings of International ASA Colloquium September 8–10, 1993, Reims, France, pp. 39–42.

    Google Scholar 

  • Zakharov V.I., Gribanov K.G., Shmelev V.M., Chursin A.A., Husson N., Golovko V.F., and Tyuterev Vl.G. (1994). Temperature dependence of atmospheric transparency function in field of 100–5000 cm−1 and model of explosive greenhouse effect. Proceedings of the Fifth International Workshop on ASS/FTS. November 30–December 2, 1994, Tokyo, Japan, pp. 419–445.

    Google Scholar 

  • Zakharov V.I., Gribanov K.G., Falko M.V., Golovko V.F., Chursin A.A., Husson N., Scott N.A., and Tyuterev Vl.G. (1996). Temperature dependence of molecular atmospheric transmission function in field of 2–400 micron and the Earth radiation balance. Proceedings of the Seventh Global Warming International Conference, April 1–3, 1996, Vienna, Austria, pp. 234–240.

    Google Scholar 

  • Zakharov V.I., Gribanov K.G., Falko M.V., Golovko V.F., Chursin A.A., Nikitin A.V., and Tyuterev Vl.G. (1997). Molecular atmospheric transmittance function in the range of 2–400 micron and Earth radiation balance. J. Quant. Spectrosc. Radiat. Transfer, 57(1), 1–10.

    Article  Google Scholar 

  • Zakharov V.I., Imasu R., and Gribanov K.G., (2005). Net free energy of the Earth and its monitoring from space concept. SPIE, 5655, 540–547.

    Article  Google Scholar 

  • Zakharov V.I., Imasu R., Gribanov K.G., and Zakharov S. V. (2008). Free energy balance at top of the atmosphere. Atmospheric and Ocean Optics, 21, 240–247.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

Zakharov, V.I. (2009). Regarding greenhouse explosion. In: Global Climatology and Ecodynamics. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78209-4_6

Download citation

Publish with us

Policies and ethics