Skip to main content
Book cover

Mineralogie pp 477–496Cite as

Aufbau des Erdinnern

  • Chapter
  • First Online:
  • 6875 Accesses

Part of the book series: Springer-Lehrbuch ((SLB))

Zusammenfassung

Durch die bahnbrechenden Forschungsergebnisse der Geophysik seit Beginn des 20. Jahrhunderts ist der Schalenbau der Erde, der bereits durch Descartes (1644) vorausgeahnt worden war, gesicherte Erkenntnis. Danach gliedert sich die Erde in drei relativ scharf begrenzte Schalen von unterschiedlicher Dichte, Masse und Volumen: Erdkruste, Erdmantel und Erdkern (Tabelle 27.1). Darüber hinaus haben Ergebnisse der experimentellen Petrologie und Geochemie wesentlich dazu beigetragen, plausible Modelle vom inneren Aufbau sowie von der chemischen und mineralogischen Zusammensetzung des Erdinnern zu entwickeln.

†Deceased

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur

  • Bass JD, Parise JB (2008) Deep Earth and recent developments in mineral physics. Elements 4:157–163

    Article  Google Scholar 

  • Bass JF, Sinogeikin SV, Li B (2008) Elastic properties of minerals: A key for understanding the composition and temperature of Earth’s interior. Elements 4:165–170

    Article  Google Scholar 

  • Brown GC, Mussett AE (1993) The inaccessible Earth, 2nd edn. Chapman & Hall, London

    Google Scholar 

  • Ernst WG (1976) Petrologic phase equilibria. Freeman, San Francisco

    Google Scholar 

  • Fiquet G, Guyot F, Badro J (2008) The Eath’s lower mantle and core. Elements 4:177–182

    Article  Google Scholar 

  • Frost DJ (2008) The upper mantle and transition zone. Elements 4:171–176

    Article  Google Scholar 

  • Gass IG, Smith PJ, Wilson RCL (1971) Understanding the Earth. Artemis, Horsham, Sussex

    Google Scholar 

  • Hemley RJ (1998) Ultrahigh-pressure mineralogy: Physics and chemistry of the Earth’s deep interior. Rev Mineral 37

    Google Scholar 

  • Hirose K, Lay T (2008) Discovery of post-perovskite and new views on the core-mantle boundary region. Elements 4:183–189

    Article  Google Scholar 

  • Karato S, Wenk H-R (2002) Plastic deformation of minerals and rocks. Rev Mineral Geochem 51

    Google Scholar 

  • Kertz W(1970) Geophysik. BI-Hochschultaschenbücher 275/275a. Bibliographisches Institut, Mannheim Wien Zürich

    Google Scholar 

  • Ohtani H (2005) Water in the mantle. Elements 1:25–30

    Article  Google Scholar 

  • Pirajno F (2004) Hotspots and mantle plumes: Global intraplate tectonics, magmatism and ore deposits. Mineral Petrol 82: 193–216

    Article  Google Scholar 

  • Press F, Siever R (1994) Earth, 6th edn. Freeman, New York

    Google Scholar 

  • Press F, Siever R (1995) Allgemeine Geologie. Spektrum, Heidelberg Berlin Oxford

    Google Scholar 

  • Richter CF (1958) Elementary seismology. Freeman, San Francisco

    Google Scholar 

  • Ringwood AE (1975) Composition and petrology of the earth’s mantle. McGraw-Hill, New York

    Google Scholar 

  • Ringwood AE (1979) Origin of the Earth and Moon. Springer, New York

    Google Scholar 

  • Ringwood AE (1982) Phase transformation and differentiation of subducted lithosphere: Implication for mantle dynamics, basalt petrogenesis and crustal evolution. J Geol 90:611–643

    Article  Google Scholar 

  • Ringwood AE (1991) Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochim Cosmochim Acta 55:2083–2110

    Article  Google Scholar 

Zitierte Literatur

  • Akaogi M, Ito E, Navrotsky A (1989) Olivine-modified spinel-spinel transitions in the system Mg2SiO4–Fe2SiO4: Calorimetric measurements, thermochemical calculations, and geophysical application. J Geophys Res 94:15771–15685

    Google Scholar 

  • Allègre C (1992) From stone to star. A view of modern geology. Harvard University Press, Cambridge Mass, London

    Google Scholar 

  • Benioff H (1955) Seismic evidence for crustal structure and tectonic activity. In: Poldervaart A (ed) Crust of the Earth (A Symposium). Geol Soc America Spec Paper 62:61–74

    Google Scholar 

  • Berkhemer H (1968) Topographie des „Ivrea-Körpers“, abgeleitet aus seismischen und gravimetrischen Daten. Schweiz Mineral Petrogr Mitt 48:235–246

    Google Scholar 

  • Berman R (1962) Graphite-diamond equilibrium boundary. 1st Internat Congr Diamonds in Industry.Ditchling Press, Sussex,England, pp 291–295

    Google Scholar 

  • Birch F (1952) Elasticity and constitution of the earth’s interior. J Geophys Res 57:227–286

    Article  Google Scholar 

  • Birch F (1963) Some geophysical applications of high pressure research. In: Paul W, Warschauer D (eds) Solids under pressure. McGraw-Hill, New York, pp 137–162

    Google Scholar 

  • Boehler R (2000) High pressure experiments and the phase diagram of lower mantle and core materials. Rev Geophys 38:221–245

    Article  Google Scholar 

  • Brown JM, Shankland TJ (1981) Thermodynamic properties in the Earth and determined from seismic profiles. Geophys J Roy Astron Soc 66:579–596, London

    Google Scholar 

  • Bullen E (1949) Compressibility-pressure hypotheses and Earth’s interior. Mon Not Roy Astron Soc Geophys Suppl 5:355–368

    Google Scholar 

  • Bundy FP, Bovenkerk HP, Strong HM, Wentorf Jr HR (1961) Diamond-graphite equilibrium line from growth and graphitization of diamond. J Chem Phys 35:383–391

    Article  Google Scholar 

  • Chudinovskikh L, Boehler R (2001) High-pressure polymorphs of olivine and the 660-km seismic discontinuity. Nature 411:574–577

    Article  Google Scholar 

  • Clark SP, Ringwood AE (1964) Density distribution and constitution of the mantle. Rev Geophys 2:35–88

    Article  Google Scholar 

  • Conrad V (1925) Laufzeitkurven des Tauernbebens vom 28. Nov. 1923. Mitt Erdbeben Komm Wien No 59

    Google Scholar 

  • Eaton JP Murata KJ (1960) How volcanoes grow. Science 132: 925–938

    Google Scholar 

  • Ellenberger F (1999) History of geology. Vol. 2: The great awakening and its first fruits – 1660–1810. Balkema, Rotterdam/Brookfield VT

    Google Scholar 

  • Fermor LL (1914) The relationship of isostasy, earthquakes and vulcanicity to the earth’s infra-plutonic shell. Geol Mag 51:65–67

    Article  Google Scholar 

  • Giese P (1968) Die Struktur der Erdkruste im Bereich der Ivrea-Zone. Schweiz Mineral Petrogr Mitt 48:261–284

    Google Scholar 

  • Goldschmidt VM (1922) Über die Massenverteilung im Erdinnern, verglichen mit der Struktur gewisser Meteoriten. Naturwiss 42:1–3

    Google Scholar 

  • Green DH, Ringwood AE (1963) Mineral assemblages in a model mantle composition. J Geophys Res 68:937–945

    Article  Google Scholar 

  • Green DH, Ringwood AE (1967a) An experimental investigation of the gabbro to eclogite transformation and ist petrological applications. Geochim Cosmochim Acta 31:767–833

    Article  Google Scholar 

  • Green DH, Ringwood AE (1967b) The stability fields of aluminous pyroxene peridotite and garnet peridotite an their relevance in upper mantle structure. Earth Planet Sci Lett 3:151–160

    Article  Google Scholar 

  • Green DH, Ringwood AE (1967c) The genesis of basaltic magmas. Contrib Mineral Petrol 15:103–190

    Article  Google Scholar 

  • Gutenberg B (1914) Über Erdbebenwellen VIIA. Beobachtungen an Registrierungen von Fernbeben in Göttingen und Folgerungen. Nachr Ges Wiss Göttingen, math-phys Kl 1914 (1):125ff

    Google Scholar 

  • Hansen M,Anderko K (1958) Constitution of binary alloys, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Hart, RS,Anderson DL,Kanamori H (1977) The effect of attenuation on gross Earth models. J Geophys Res 82:1647–1654

    Article  Google Scholar 

  • Harte B, Harris JW (1994) Lower mantle mineral association preserved in diamonds. Mineral Mag 58A:284–285

    Article  Google Scholar 

  • Hirschmann G (1996) The structure of a Variscan terrane boundary: Seismic investigation – drilling – models. Tectonophysics 264:327–339

    Article  Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: The message from oceanic volcanism. Nature 385:221–229

    Article  Google Scholar 

  • Holmes A (1927) Some problems of physical geology and the earth’s thermal history. Geol Mag 64:263–278

    Article  Google Scholar 

  • Ito E, Takahashi E (1989) Post-spinel transformation in the system Mg2SiO4–Fe2SiO4 and some geophysical Implications. J Geophys Res 94:10637–10646

    Article  Google Scholar 

  • Jaques AL, Green DH (1980) Anhydrous melting of peridotite at 0–16 Kb pressure and genesis of tholeiitic basalts. Contrib Mineral Petrol 73:287–310

    Article  Google Scholar 

  • Javoy M (1999) Chemical Earth models. CR Acad Sci Paris, Earth Planet Sci 329:537–555

    Google Scholar 

  • Jeanloz R (1990) The nature of the Earth’s core. Ann Rev Earth Planet Sci 18:357–386

    Article  Google Scholar 

  • Jeffreys H (1939) The times of P, S and SKS velocities of P and S. Not Roy Astron Soc Geophys Suppl 4:498–533

    Google Scholar 

  • Kushiro A, Yoder HS (1966) Anorthite-forsterite and anorthiteenstatite reactions and their bearing on the basalt-eclogite transformation. J Petrol 7:337–362

    Google Scholar 

  • Lehmann I (1936) Bur Centr Séism Trav Sci 14:3–31

    Google Scholar 

  • Mehnert KR (1975) The Ivrea Zone. A model of the deep crust. Neues Jahrb Mineral Abhandl 125:158–199

    Google Scholar 

  • Mohorovičić A (1910) Das Beben vom 8. X. 1909. Jahrb metereol Observ Zagreb für 1909 9:1–63

    Google Scholar 

  • Montelli R, Nolet G, Dahlen FA, Masters G, Engdahl ER, Hung S-H (2004) Finite-frequency tomography reveals a variety of plumes in the Mantle. Science 303:338–343

    Article  Google Scholar 

  • Moore RO, Gurney JJ (1985) Pyroxene solid solution in garnets included in diamonds. Nature 318:553–555

    Article  Google Scholar 

  • Mueller ST (1977) A new model of the continental crust. In: The Earth’s Crust. Geophys Monogr 20:289–317, Amer Geophys Union

    Google Scholar 

  • Oldham RD (1906) The constitution of the earth, as revealed by earthquakes. Quart J Geol Soc London 62:456–473

    Article  Google Scholar 

  • O’Neill B, Jeanloz R (1990) Experimental petrology of the lower mantle: A natural peridotite taken to 54 Gpa. Geophys Res Lett 77:1477–1480

    Article  Google Scholar 

  • Poirier J-P (1994) Light elements in the Earth’s outer core: A critical review. Phys Earth Planet Int 85:319–337

    Article  Google Scholar 

  • Ringwood AE (1962) A model for the upper mantle. J Geophys Res 64:857–867

    Article  Google Scholar 

  • Ringwood AE,Major A (1967) High-pressure reconaissance investigations in the system Mg2SiO4–MgO–H2O. Earth Planet Sci Lett 2:130–133

    Article  Google Scholar 

  • Sano A, Ohtani E,Kubo T, Funakoshi K (2004) In situ X-ray observation of decomposition of hydrous aluminum silicate AlSiO3OH and aluminum oxide hydroxide at high pressure and temperature. J Phys Chem Solids 65:1547–1554

    Article  Google Scholar 

  • Schmidt MW, Finger LW, Angel RJ, Dinnebier RE (1998) Synthesis, crystal structure and phase relations of AlSiO3OH, a high-pressure hydrous phase. Amer Mineral 83:881–888

    Google Scholar 

  • Stachel T, Brey G (2001) Reise zum Mittelpunkt der Erde. Einschlüsse in Diamanten als Botschafter aus den Tiefen unserer Erde. Naturwiss Rundschau 54:184–191

    Google Scholar 

  • Washington HS (1925) The chemical composition of the Earth. Am J Sci 209:351–378

    Google Scholar 

  • Wunder B, Medenbach O, Krause W, Schreyer W (1993a) Synthesis, properties and stability of Al3Si2O7(OH)3 (phase Pi), a hydrous high-pressure phase in the system Al2O3–SiO2–H2O (ASH). Eur J Mineral 5:637–649

    Google Scholar 

  • Wunder B, Rubie CD, Ross CR, Medenbach O, Seifert F, Schreyer W (1993b) Synthesis, stability and properties of Al2SiO4(OH)2: A fully hydrated analogue of topaz. Amer Mineral 78:285–297

    Google Scholar 

  • Yoder HS, Tilley CE (1962) Origin of basaltic magmas: An experimental study of natural and synthetc rock systems. J Petrol 3:342–532

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Okrusch, M., Matthes †, S. (2010). Aufbau des Erdinnern. In: Mineralogie. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78201-8_27

Download citation

Publish with us

Policies and ethics