Skip to main content
Book cover

Mineralogie pp 425–450Cite as

Phasengleichgewichte und Mineralreaktionen in metamorphen Gesteinen

  • Chapter
  • First Online:
  • 7177 Accesses

Part of the book series: Springer-Lehrbuch ((SLB))

Zusammenfassung

Wie wir im vorausgehenden Kapitel gezeigt hatten, führt die Gesteinsmetamorphose zu tiefgreifenden Veränderungen im Gefüge und im Mineralbestand von Gesteinen. Durch prograde und retrograde Mineralreaktionen entstehen neue Mineralgesellschaften, die eine schrittweise Anpassung an die sich verändernden P-T-Bedingungen dokumentieren. Dabei kann – zumindest beim Höhepunkt der Metamorphose – ein thermodynamisches Gleichgewicht erreicht oder annähernd erreicht werden, so dass man von Gleichgewichtsparagenesen sprechen kann. Im folgenden Kapitel wollen wir wichtige Mineralreaktionen und die dabei entstehenden Paragenesen näher kennenlernen. Darüber hinaus sollen die Methoden diskutiert werden, mit denen man die Stabilitätsbedingungen metamorpher Paragenesen quantitativ abschätzen kann.

†Deceased

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur

  • Bucher K, Frey M (2002) Petrogenesis of metamorphic rocks. Springer Berlin Heidelberg New York

    Google Scholar 

  • Ernst WG (1976) Petrologic phase equilibria. Freeman, San Francisco

    Google Scholar 

  • Harley SL, Kelly NM (2007) Zircon – tiny but timely. Elements 3: 13–18

    Article  Google Scholar 

  • Harley SL,Melly NM, Möller A (2007) Zircon behaviour and the thermal history of mountain chains. Elements 3:25–30

    Article  Google Scholar 

  • Miyashiro A (1994) Metamorphic petrology. UCL Press, London

    Google Scholar 

  • Powell R, Guiraud M, White RW (2005) Truth and beauty in metamorphic phase equilibria: Conjugate variables and phase diagrams. Canad Mineral 43:21–33

    Article  Google Scholar 

  • Rubatto D, Hermann J (2007) Zircon behaviour in deeply subducted rocks. Elements 3:31–3

    Google Scholar 

  • Seifert F (1978) Bedeutung und Nachweis von thermodynamischem Gleichgewicht und die Interpretation von Ungleichgewichten. Fortschr Mineral 55:111–134

    Google Scholar 

  • Spear FS (1993) Metamorphic phase equilibria and pressure– temperature–time paths.Mineral Soc America,Washington, DC

    Google Scholar 

  • Will TM (1998) Phase equilibria in metamorphic rocks – thermodynamic background and petrological applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Yardley BWD (1989) An introduction to metamorphic petrology. Longman, Burnt Mill, Harlow, England

    Google Scholar 

Zitierte Literatur

  • Berman RG (1988) Internally consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3– Al2O3–SiO2–TiO2–H2O–CO2. J Petrol 29:445–522

    Google Scholar 

  • Bohlen SR, Montana A, Kerrick DM (1991) Precise determinations of equilibria kyanite ⇌ sillimanite and kyanite ⇌ andalusite and a revised triple point for Al2SiO5 polymorphs. Am Mineral 76:677–680

    Google Scholar 

  • Chatterjee ND (1970) Synthesis and upper stability of paragonite. Contrib Mineral Petrol 27:244–257

    Article  Google Scholar 

  • Chatterjee ND (1972) The upper stability limit of the assemblage paragonite + quartz and its natural occurrences. Contrib Mineral Petrol 34:288–303

    Article  Google Scholar 

  • Chatterjee ND, Johannes W (1974) Thermal stability and standard thermodynamic properties of synthetic 2 M1-muscovite, K[AlSi3O10(OH)2]. Contrib Mineral Petrol 48:89–114

    Article  Google Scholar 

  • Chernosky JV Jr., Day HW, Caruso LJ (1985) Equilibria in the system MgO–SiO2–H2O: Experimental determination of the stability of Mg-anthophyllite. Am Mineral 70:223–236

    Google Scholar 

  • Cho M, Maruyama S, Liou JG (1987) An experimental investigation of heulandite-laumontite equilibrium at 1 000 to 2 000 bar P fluid. Contrib Mineral Petrol 97:43–50

    Article  Google Scholar 

  • England PC, Thompson AB (1984) Pressure–temperature–time paths of regional metamorphism. Part I: Heat transfer during the evolution of regions of thickened continental crust. J Petrol 25:894–928

    Google Scholar 

  • Eugster HP (1957) Heterogeneous reactions involving oxidation and reduction at high temperatures. J Chem Phys 26:1760–1761

    Article  Google Scholar 

  • Evans BW, Johannes W, Oterdoom H, Trommsdorff V (1976) Stability of chrysotile and antigorite in the serpentinite multisystem. Schweiz Mineral Petrogr Mitt 56:79–93

    Google Scholar 

  • Goldschmidt VM (1911) Die Kontaktmetamorphose im Kristiania-Gebiet. Oslo Vidensk Skr, I Math-Nat K1, no 11

    Google Scholar 

  • Greenwood HJ (1961) The system NaAlSi2O6–H2O–argon: Total pressure and water pressure in metamorphism. J Geophys Res 66:3923–3946

    Article  Google Scholar 

  • Greenwood HJ (1967) Mineral equilibria in the system MgO–SiO2– H2O–CO2. In: Abelson PH (ed) Researches in Geochemistry. pp 542–567, Wiley, New York

    Google Scholar 

  • Gruner BB (2000) Metamorphoseentwicklung im Kaokogürtel, NW-Namibia: Phasenpetrologische und geothermobarometrische Untersuchungen panafrikanischer Metapelite. Freiberger Forschungshefte C486:221 pp

    Google Scholar 

  • Harker RI, Tuttle OF (1956) Experimental data on the P CO2-T curve for the reaction calcite + quartz = wollastonite + carbon dioxide. Am J Sci 254:239–256

    Google Scholar 

  • Hemley JJ (1967) Stability relations of pyrophyllite, andalusite, and quartz at elevated pressures and temperatures.Am Geophys Union Trans 48:224

    Google Scholar 

  • Holdaway MJ (1971) Stability of andalusite and the aluminum silicate phase diagram. Am J Sci 271:97–131

    Google Scholar 

  • Holdaway MJ,Mukhopadhyay B (1993) A reevaluation of the stability relations of andalusite: Thermochemical data and phase diagram for the aluminum silicates. Am Mineral 78:298–315

    Google Scholar 

  • Holland TJB,Powell R (1985) An internally consistent thermodynamic dataset with uncertainties and correlations: 2. Data and results. J Metam Geol 3:343–370

    Article  Google Scholar 

  • Holland TJB, Powell R (1990) An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: The system K2O–Na2O–CaO–MgO–MnO–FeO– Fe2O3–Al2O3–TiO2–SiO2–C–H2–O2. J Metam Geol 8:89–124

    Article  Google Scholar 

  • Hsu LC (1968) Selected phase relationships in the system Al–Mn– Fe–Si–O–H: A model for garnet equilibria. J Petrol 9:40–83

    Google Scholar 

  • Kennedy GC, Holser WT (1966) Pressure-volume-temperature and phase relations of water and carbon dioxide. Geol Soc America Mem 97:371–384

    Google Scholar 

  • Kerrick DM (1968) Experiments on the upper stability limit of pyrophyllite at 1.8 kilobars and 3.9 kilobars water pressure. Am J Sci 266:204–214

    Google Scholar 

  • Kerrick DM (1972) Experimental determination of muscovite + quartz stability with P H2O < P total. Am J Sci 272:946–958

    Google Scholar 

  • Liou JG (1971) P-T stabilities of laumontite, wairakite, lawsonite and related minerals in the system CaAl2Si2O8–SiO2–H2O. J Petrol 12:379–411

    Google Scholar 

  • Massonne HJ, Schreyer W (1987) Phengite geobarometry based on the limiting assemblage with K-feldspar,phlogopite, and quartz. Contrib Mineral Petrol 96:212–224

    Article  Google Scholar 

  • Massonne HJ, Schreyer W (1989) Stability field of the high-pressure assemblage talc + phengite and two new phengite barometers. Eur J Mineral 1:391–410

    Google Scholar 

  • Mezger K, Rawnsley CM, Bohlen SR, Hanson GN (1990) U-Pb garnet, sphene, monazite, and rutile ages: Implications for the duration of high-grade metamorphism and cooling histories, Adirondack Mts., New York. J Geol 99: 415–428

    Article  Google Scholar 

  • Miyashiro A (1973) Metamorphism and metamorphic belts. Allen & Unwin, London

    Google Scholar 

  • Ohmoto H,Kerrick D (1977) Devolatilization equilibria in graphite systems. Am J Sci 277:1013–1044

    Google Scholar 

  • Okrusch M (1969) Die Gneishornfelse um Steinach in der Oberpfalz. Eine phasenpetrologische Analyse. Contrib Mineral Petrol 22:32–72

    Article  Google Scholar 

  • Schreyer W (1988) Subduction of continental crust to mantle depths: Petrological evidence. Episodes 11:97–104

    Google Scholar 

  • Spear FS (1988) The Gibbs method and Duhem’s theorem: The quantitative relationships among P, T, chemical potential, phase composition, and reaction progress in igneous and metamorphic systems. Contrib Mineral Petrol 99:249–256

    Article  Google Scholar 

  • Spear FS, Peacock SM, Kohn MJ, Florence FP,Menard T (1991) Computer programs for petrological P-T-t path calculations. Am Mineral 76:2009–2012

    Google Scholar 

  • Storre B (1972) Dry melting of muscovite + quartz in the range P s=7 kb to P s= 20 kb. Contrib Mineral Petrol 37:87–89

    Article  Google Scholar 

  • Storre B, Karotke E (1972) Experimental data on melting reactions of muscovite + quartz in the system K2O–Al2O3–SiO2–H2O to 20 Kb water pressure. Contrib Mineral Petrol 36:343–345

    Article  Google Scholar 

  • Thompson AB (1971) Analcite-albite equilibria at low temperatures. Am J Sci 271:79–92

    Google Scholar 

  • Thompson AB (1970) A note on the kaolinite-pyrophyllite equilibrium. Am J Sci 268:454–458

    Google Scholar 

  • Winkler HGF (1979) Petrogenesis of metamorphic rocks, 5th edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Zeh A, Holness M (2003) The effect of reaction overstep on garnet microstructures in metapelitic rocks of the Ilesha Schist Belt, SW Nigeria. J Petrol 44:967–994

    Article  Google Scholar 

  • Zen E-An (1966) Construction of pressure-temperature diagrams for multicomponent systems after the method of Schreinemakers – A geometric approach. US Geol Survey Bull no 1225, 56 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Okrusch, M., Matthes †, S. (2010). Phasengleichgewichte und Mineralreaktionen in metamorphen Gesteinen. In: Mineralogie. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78201-8_25

Download citation

Publish with us

Policies and ethics