Skip to main content

Metamorphe Gesteine

  • Chapter
  • First Online:
Book cover Mineralogie

Part of the book series: Springer-Lehrbuch ((SLB))

  • 6885 Accesses

Zusammenfassung

Unter Gesteinsmetamorphose versteht man die Summe aller Umwandlungen, mit denen ein Gestein auf Veränderungen der physikalisch-chemischen Bedingungen im Erdinnern, insbesondere von Druck und Temperatur, reagiert. Dabei entstehen aus magmatischen, sedimentären oder (bereits) metamorphen Ausgangsgesteinen neue, metamorphe Gesteine (Metamorphite), die sich in ihrem Gefüge, ihrem Mineralbestand, bisweilen sogar in ihrem Chemismus vom Ausgangsgestein unterscheiden. Während bei der konventionellen Metamorphose der feste Zustand im Wesentlichen erhalten bleibt, kann es bei hochgradiger Metamorphose zum teilweisen Aufschmelzen von Gesteinen kommen (partielle Anatexis). Mit der beginnenden Absonderung von Schmelze ist das Grenzgebiet zur Magmenbildung erreicht (Ultrametamorphose). Polymetamorphe Gesteinehaben mehrere verschiedene Metamorphoseakte erlebt.

†Deceased

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur

  • Ashworth JR (ed) (1985) Migmatites. Blackie, Glagow London

    Google Scholar 

  • Ashworth JR, Brown M (eds) (1990) High-temperature metamorphism and crustal anatexis. Unwin Hyman, Boston Sydney Wellington

    Google Scholar 

  • Barker AJ (1998) Introduction to metamorphic textures and microstructures, 2nd edn. Stanley Thornes, Cheltenham

    Google Scholar 

  • Best MG (2003) Igneous and metamorphic petrology, 2nd edn. Blackwell, Malden (MA, USA) Oxford

    Google Scholar 

  • Bucher K, Frey M (2002) Petrogenesis of metamorphic rocks, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Eisbacher GH (1996) Einführung in die Tektonik, 2. Aufl. Enke, Stuttgart

    Google Scholar 

  • Ernst WG (1976) Petrologic phase equilibria. Freeman, San Francisco

    Google Scholar 

  • Evans BW (2007) Metamorphic petrology. Landmark Paper Nr 3. Mineral Soc Great Britain and Ireland, London

    Google Scholar 

  • Hamblin WK (1991) Earth’s dynamic systems, 6th edn. Macmillan, New York

    Google Scholar 

  • Karato S, Wenk H-R (eds) (2002) Plastic deformation of minerals and rocks. Rev Mineral Geochem 51

    Google Scholar 

  • Kerrick DM, ed (1991) Contact metamorphism. Rev Mineral 26

    Google Scholar 

  • Kornprobst J (2002) Metamorphic rocks and their geodynamic significance. Kluwer, Dordrecht

    Google Scholar 

  • Mehnert KR (1968, 1971) Migmatites and the origin of granitic rocks, 1st and 2nd edn. Elsevier, Amsterdam New York

    Google Scholar 

  • Meschede M (1994) Methoden der Strukturgeologie. Enke, Stuttgart

    Google Scholar 

  • Miyashiro A (1994) Metamorphic petrology. UCL Press, London

    Google Scholar 

  • Passchier CW, Trouw RAJ (1996) Microtectonics. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Spry A (1983) Metamorphic textures. Pergamon, Oxford

    Google Scholar 

  • Turner FJ (1981) Metamorphic petrology, 2nd edn. Hemisphere, Washington New York London

    Google Scholar 

  • Vernon RH (1976) Metamorphic processes – reactions and microstructure development. Allen & Unwin, London

    Google Scholar 

  • Winter JD (2001) An introductionn to igneous and metamorphic petrology. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  • Yardley BWD (1989) An introduction to metamorphic petrology. Longman, Harlow, Essex, UK

    Google Scholar 

  • Yardley BWD, MacKenzie WS, Guilford C (1992) Atlas metamorpher Gesteine und ihrer Gefüge in Dünnschliffen. Enke, Stuttgart

    Google Scholar 

Zitierte Literatur

  • Abu El-Enen, MM, Okrusch M, Will TM (2004) Contact metamorphism and metasomatism at a dolerite-limestone contact in the Gebel Yelleq area, Northern Sinai, Egypt. Mineral Petrol 81:135–164

    Article  Google Scholar 

  • Altherr R, Kreuzer H, Wendt I, Lenz H, Wagner GA, Keller J, Harre W, Höhndorf A (1982) A Late Oligocene/Early Miocene high temperature belt in the Attic-Cycladic Crystalline Complex (SE Pelagonian, Greece). Geol Jahrb E23:97–164

    Google Scholar 

  • Andersen T (1989) Carbonatite-related contact metasomatism in the Fen complex,Norway: Effects and petrogenetic implications. Mineral Mag 53:395–414

    Article  Google Scholar 

  • Barrow G (1893) On an intrusion of muscovite-biotite gneiss in the southern Highlands of Scotland, and its accompanying metamorphism. Quart J Geol Soc London 49:330–358

    Article  Google Scholar 

  • Barrow G (1912) On the geology of lower Dee-side and the southern Highland Border. Proc Geol Assoc 23:274–290

    Article  Google Scholar 

  • Becke F (1903) Über Mineralbestand und Struktur der Kristallinen Schiefer. Denkschr Akad Wiss Wien 75:97 ff.

    Google Scholar 

  • Bose K, Ganguly J (1995) Quartz-coesite transition revisited: Reversed experimental determination at 500–1 200 °C and retrieved thermodynamical properties. Am Mineral 80:231–238

    Google Scholar 

  • Brögger WC (1921) Die Eruptivgesteine des Kristianiagebietes IV. Das Fengebiet in Telemark, Norwegen. Norsk Vidensk Selsk Skr I, Math Naturv kl No 9, Oslo

    Google Scholar 

  • Chao ECT, Shoemaker EM, Madsen BM (1960) First natural occurrence of coesite. Science 133:882

    Article  Google Scholar 

  • Chatterjee ND (1974) Synthesis and upper thermal stability limit of 2 M-margarite, CaAl2[Al2Si2O10(OH)2]. Schweiz Mineral Petrogr Mitt 54:753–767

    Google Scholar 

  • Chatterjee ND, Johannes W (1974) Thermal stability and standard thermodynamic properties of synthetic 2 M1-muscovite, KAl2[AlSi3O10(OH)2]. Contrib Mineral Petrol 48:89–114

    Article  Google Scholar 

  • Coombs DS (1961) Some recent work on the lower grades of metamorphism. Australian J Sci 24:203–215

    Google Scholar 

  • Dietrich RV, Mehnert KR (1961) Proposal for the nomenclature of migmatites and associated rocks. 21st Internat Geol Congr Nor-den, Copenhagen 1960, Proc 14:56–67

    Google Scholar 

  • Drüppel K, Hoefs J, Okrusch M (2005) Fenitizing processes induced by ferrocarbonatite magmatism at Swartbooisdrif, NW Namibia. J Petrol 46:377–406

    Article  Google Scholar 

  • El Goresy,A,Gillet P,Chen M, Kunstler F, Graup G,Stähle V (2001a) In situ discovery of shock-induced graphite-diamond phase transition in gneisses from the Ries crater,Germany.AmMineral 86:611–621

    Google Scholar 

  • El Goresy A, Chen M, Gillet P, Dubrovinsky L, Graup G, Ahuja R (2001b) A natural shock-induced dense polymorph of rutile with α -PbO2 structure in the suevite from the Ries Crater in Germany. Earth Planet Sci Letters 192:485–495

    Article  Google Scholar 

  • ElGoresy A, Chen M, Dubrovinsky L, Gillet P, Graup G (2001c) An ultradense polymorph of rutile with seven-coordinated titanium fom the Ries Crater. Science 293:1467–1470

    Article  Google Scholar 

  • El Goresy A, Dubrovisnsky LS, Gillet P, Mostefaoui S, Graup G, Drakopoulos M, Simionovici AS, Swamy V, Masaitis VL (2003) A novel cubic, transparent and superhard polymorph of carbon from the Ries and Popgai Craters: Implications to understanding dynamic-induced natural high-pressure phase transitions in the carbon system. Lunar Planet Sci 34 (CD-ROM)

    Google Scholar 

  • Elliott DS (1973) Diffusion flow laws in metamorphic rocks. Geol Soc America Bull 84:2645–2664

    Article  Google Scholar 

  • Engelhardt W von (1960) Der Porenraum der Sedimente. Springer, Berlin Göttingen Heidelberg

    Google Scholar 

  • Engelhardt W von, Arndt J, Stöffler D, Müller WF, Jeziorkowski H, Gubser RA (1967) Diaplektische Gläser in den Breccien des Ries von Nördlingen als Anzeichen der Stoßwellenmetamorphose. Contrib Mineral Petrol 15:93–107

    Article  Google Scholar 

  • Eskola P (1939) Die metamorphen Gesteine. In: Barth TFW,Correns CW, Eskola P (1939) Die Entstehung der Gesteine. Springer Berlin, 3. Teil, S 263–407 (Reprint 1970)

    Google Scholar 

  • Feenstra A (1985) Metamorphism of bauxites on Naxos, Greece. Geologica Ultraiectina 39:1–206, Alblasserdam, Niederlande

    Google Scholar 

  • Fersmann AE (1929) Geochemische Migration der Elemente. III. Smaragdgruben im Uralgebirge. Abhandl Prakt Geol Bergwirtschaftslehre 18:74–116

    Google Scholar 

  • French BM, Short NM (eds) (1968) Shock metamorphism of natural materials. Mono Book Corp, Baltimore

    Google Scholar 

  • Frey M (ed) (1987) Low temperature metamorphism.Blackie, Glasgow

    Google Scholar 

  • Fritsch W, Meixner H, Wieseneder H (1967) Zur quantitativen Klassifikation der kristallinen Schiefer.Neues Jahrb Mineral Monatsh 1967:364–376

    Google Scholar 

  • Gall H, Müller D, Stöffler D (1975) Verteilung, Eigenschaften und Entstehung der Auswurfsmassen des Impaktkraters Nördlinger Ries. Geol Rundschau 64:915–947

    Article  Google Scholar 

  • Gault DE, Quaide WL, Overbeck VR (1968) Impact cratering mechanics and structures. In: French and Short (1968)

    Google Scholar 

  • Gillis KM, Thompson G (1993) Metabasalts from the Mid-Atlantic Ridge: New insights into hydrothermal systems in slow-spreading crust. Contrib Mineral Petrol 113:502–523

    Article  Google Scholar 

  • Grünhagen H (1980) Petrographie und Genese der Adinole an einem Diabaskontakt im nordöstlichen Sauerland. Neues Jahrb Mineral Abhandl 140:253–272

    Google Scholar 

  • Haas H (1972) Diaspore-corundum equilibrium determined by epitaxis of diaspore on corundum. Am Mineral 57:1375–1385

    Google Scholar 

  • Hamilton WB (1998) Archean magmatism and deformation were not products of plate tectonics. Precambr Res 91:143–179

    Article  Google Scholar 

  • Harker A (1932) Metamorphism. 2nd edn 1939, 3rd edn 1950, reprint 1974. Methuen, London

    Google Scholar 

  • Harrassowitz H (1927) Anchimetamorphose, das Gebiet zwischen Oberflächen- und Tiefenumwandlung der Erdrinde. Oberhess Ges Natur- und Heilkunde Gießen, Naturwiss Abt Ber 12:9–15

    Google Scholar 

  • Holdaway MJ,Mukhopadhyay B (1993) A reevaluation of the stability relations of andalusite: Thermochemical data and phase diagram for the aluminum silicates. Am Mineral 78:298–315

    Google Scholar 

  • Holland TJB (1980) The reaction albite = jadeite + quartz determined experimentally in the range 600–1 200 °C. Am Mineral 65:129–134

    Google Scholar 

  • Humphris SE, Thompson G (1978) Hydrothermal alteration of oceanic basalts by seawater. Geochim Cosmochim Acta 42: 127–136

    Article  Google Scholar 

  • Jaeger JC (1957) The temperature in the neighborhood of a cooling intrusive sheet. Am J Sci 255:306–318

    Google Scholar 

  • Jaeger JC (1959) Temperatures outside a cooling intrusive sheet. Am J Sci 257:44–54

    Google Scholar 

  • Jansen JBH, Schuiling ED (1976) Metamorphism on Naxos: Petrology and geothermal gradients. Am J Sci 276:1225–1253

    Google Scholar 

  • Johannes W (1988) What controls partial melting in migmatites? J Metam Geol 6:451–465

    Article  Google Scholar 

  • Johannes W, Holtz F (1996) Petrogenesis and experimental petrology of granitic rocks. Springer, Heidelberg, Berlin New York

    Google Scholar 

  • Jung, S, Mezger K (2001) Geochronology in migmatites – a Sm-Nd, U-Pb and Rb-Sr study from the Proterozoic Damara Belt (Namibia): implications for polyphase development of migmatites in high-grade terranes. J Metam Geol 19:77–97

    Article  Google Scholar 

  • Kleber W, Bautsch H-J, Bohm J (1998) Einführung in die Kristallographie, 18. Aufl. Verlag Technik Berlin

    Google Scholar 

  • Kresten P, Morogan V (1986) Fenitization at the Fen complex, southern Norway. Lithos 19:27–42

    Article  Google Scholar 

  • Kukla PA, Kukla C, Stanistreet IG, Okrusch M (1990) Unusual preservation of sedimentary structures in sillimanite-bearing metaturbidites of the Damara Orogen, Namibia. J Geol 98: 91–99

    Article  Google Scholar 

  • Kukla C, Kramm U, Kukla PA, Okrusch M (1991) U-Pb monazite data relating to metamorphism and granite intrusion in the northwestern Khomas Trough, Damara Orogen, central Namibia. Communs Geol Surv Namibia 7:49–54

    Google Scholar 

  • Langenhorst F, Deutsch A (1998) Minerals in terrestrial impact structures and their characteristic features. In Marfunin AS (ed) Mineral matter in space, mantle, ocean floor, biosphere, environ-mental management, and jewelry. Advanced Mineralogy vol 3: 95–119

    Google Scholar 

  • Lippmann F (1977) Diagenese und beginnende Metamorphose bei Sedimenten. Bull Acad Serbe Sci Nat, T LVI, No 15

    Google Scholar 

  • Melson WG, Andel TH van (1966) Metamorphism in the Mid-Atlantic Ridge, 22° N latitude. Marine Geol 4:165–186

    Article  Google Scholar 

  • Miyashiro A (1972) Metamorphism and related magmatism in plate tectonics. Am J Sci 272:629–656

    Google Scholar 

  • Miyashiro A, Shido F, Ewing M (1970) Petrologic models for the Mid-Atlantic Ridge. Deep Sea Res 17:109–123

    Google Scholar 

  • Miyashiro A, Shido F, Ewing M (1971) Metamorphism in the Mid-Atlantic Ridge near 24° and 30° N. Phil Trans Roy Soc London A268:589–603

    Article  Google Scholar 

  • Möller A, Appel P, Mezger K, Schenk V (1995) Evidence for a 2 Ga subduction zone: Eclogites in the Usagaran belt of Tanzania. Geology 23:1067–1070

    Article  Google Scholar 

  • Okrusch M, Bröcker M (1990) Eclogites associated with high-grade blueschists in the Cycladic archipelago, Greece: A review. Eur J Mineral 2:451–478

    Google Scholar 

  • Phillips FM, Zreda MG, Smith SS, Elmore D, Kubik PW, Dorn RI, Roddy DJ (1991) Age and geomorphic history of Meteor Crater, Arizona, from cosmogenic 36Cl and 14C in rock varnish. Geochim Cosmochim Acta 55:2695–2698

    Article  Google Scholar 

  • Read HH (1952) Metamorphism and migmatisation in the Ythan Valley, Aberdeenshire. Trans Edinburgh geol Soc 15:265–279

    Google Scholar 

  • Reitz E (1987) Palynologie in metamorphen Serien: I. Silurische Sporen in einem granatführenden Glimmerschiefer des Vor-Spessart. Neues Jahrb Geol Paläont Monatsh 1987:699–704

    Google Scholar 

  • Richardson SW (1968) Staurolite stability in a part of the system Fe–Al–Si–O–H. J Petrol 9:467–488

    Google Scholar 

  • Robyr M, Vonlanthen P, Baumgartner LP, Grobety B (2007) Growth mechanism of snowball garnets from the Lukmanier Pass area (Central Alps, Switzerland): a combined µCT/EPMA/EBSD study. Terra Nova 19:240–244

    Article  Google Scholar 

  • Rosenbusch H (1877) Die Steiger Schiefer und ihre Contactzone. Abhandl Geol Spezialkarte Elsass-Lothringen 1:80–393

    Google Scholar 

  • Sander B (1950) Einführung in die Gefügekunde geologischer Körper, 2. Teil: Die Korngefüge. Springer, Wien

    Google Scholar 

  • Sawyer EW, Barnes S-J (1988) Temporal and compositional differences beteen subsolidus and anatectic migmatite leucosomes from the Quetico metasedimentary belt, Canada. J Metam Geol 6:437–450

    Article  Google Scholar 

  • Scharbert HG (1963) Zur Nomenklatur der Gesteine in Granulitfazies. Tschermaks Mineral Petrol Mitt (3)8:591–598

    Article  Google Scholar 

  • Scheumann KH (1961) „Granulit“, eine petrographische Definition. Neues Jahrb Mineral Monatsh 1961:75–80

    Google Scholar 

  • Schmid R, Fettes D,Harte B, Davis E, Desmons J, Siivola J (2002) Towards a unified nomenclature in metamorphic petrology. 1. How to name a metamorphic rock. A proposal on behalf of the IUGS Subcomm.on the systematics of metamorphic rocks.Web version of 31.7.2002, 16 pp

    Google Scholar 

  • Schmitt RT, Lapke C, Kenkmann T, Stöffler D (2000) Impaktdiamanten aus dem Nördlinger Ries. Ber Deutsche Mineral Ges, Eur. J Mineral 12, Beih 1:187

    Google Scholar 

  • Schmitt RT, Lapke C, Lingemann CM, Siebenschock M, Stöffler D (2005) Distribution and origin of impact diamonds in the Ries crater, Germany. In Kenkmann T, Hörz F , Deutsch H (eds): Large meteorite impacts III. Geol Soc America Spec Paper 384: 299-314

    Google Scholar 

  • Schneiderhöhn H (1961) Die Erzlagertätten der Erde, Bd II. Die Pegmatite. Fischer, Stuttgart

    Google Scholar 

  • Searle M, Hacker BR, Bilham R (2001) The Hindu Kush seismic zone as a paradigm for the creation of ultrahigh-pressure diamond-and coesite-bearing continental rocks. J Geol 109:143–153

    Article  Google Scholar 

  • Sederholm JJ (1907) Om granit och gneis deras uppkomst, uppträdande och utbredning inom urberget i Fennoskandia. Finland Comm Géol Bull 23, 110 pp

    Google Scholar 

  • Seidel E, Kreuzer H, Harre W (1982) A late Oligocene/early Miocene high pressure belt in the external Hellenides. Geol Jahrb E23:165–206

    Google Scholar 

  • Spear FS, Cheney IT (1989) A petrogenetic grid for pelitic schists in the system SiO2–Al2O3–FeO–MgO–K2O–H2O. Contrib Mineral Petrol 101:149–164

    Article  Google Scholar 

  • Stöffler D (1972) Deformation and transformation of rock-forming minerals by natural and experimental shockprocesses. I. Behavior of minerals under shock compression. Fortschr Mineral 49:50–113

    Google Scholar 

  • Storre B, Karotke E (1972) Experimental data on melting reactions of muscovite in the system K2O–Al2O3–SiO2–H2O to 20 Kb water pressure. Contrib Mineral Petrol 36:343–345

    Article  Google Scholar 

  • Tilley CE (1925) Metamorphic zones in the southern Highlands of Scotland. Quart J Geol Soc London 81:100–112

    Article  Google Scholar 

  • Turcotte DL, Oxburgh ER (1972) Mantle convection and the new global tectonics. Ann Rev Fluid Mech 4:33–68

    Article  Google Scholar 

  • Utada M (2001) Zeolites in hydrothermally altered rocks. In: Bish DL, Ming DW (eds) Natural zeolites: Occurrence, properties, applications. Rev Mineral Geochem 45:305–322

    Google Scholar 

  • Vallance TG (1965) On the chemistry of pillow lavas and the origin of spilites. Mineral Mag 34:471–481

    Article  Google Scholar 

  • Voll G, Töpel J, Pattison DRM, Seifert F, eds (1991) Equilibrium and kinetics in contact metamorphism: The Ballachulish Igneous Complex and its aureole. Springer, Berlin Heidelberg New York Tokio

    Google Scholar 

  • Wenk E (1963) Zur Definition von Schiefer und Gneis. Neues Jahrb Mineral Monatsh 1963:97–107

    Google Scholar 

  • Wickham SM (1987) Crustal anatexis and granite petrogenesis during low-pressure regional metamorphism: The Trois Seignurs Massif, Pyrenees, France. J Petrol 8:127–169

    Google Scholar 

  • Winkler HGF (1979) Petrogenesis of metamorphic rocks, 5th edn, Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Okrusch, M., Matthes †, S. (2010). Metamorphe Gesteine. In: Mineralogie. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78201-8_24

Download citation

Publish with us

Policies and ethics