Skip to main content

Hydrothermale Erz- und Minerallagerstätten

  • Chapter
  • First Online:
Mineralogie

Part of the book series: Springer-Lehrbuch ((SLB))

  • 7107 Accesses

Zusammenfassung

Der Übergang vom pegmatitischen zum hydrothermalen Stadium ist fließend. Es bestehen, physikalisch-chemisch gesehen, keine Unterschiede zwischen der Lösungsfähigkeit H2O-reicher Schmelzen, überkritischer Fluide oder unterkritischer Lösungen. Unterschiede hängen von den Zustandsbedingungen Temperatur, Druck sowie Konzentration der leichtflüchtigen Komponenten in dem betreffenden System ab. Hydrothermale Lagerstätten können innerhalb der Erdkruste entstehen in Form von

†Deceased

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur

  • Barnes HL (1988) Ores and minerals. Open Univ Press

    Google Scholar 

  • Barnes HL (ed) (1997) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York

    Google Scholar 

  • Bierlein F, Groves DI, Goldfarb RJ, Dubé B (2006) Lithosperic controls on the formation of provinces hosting giant orogenic gold deposits. Mineral Depos 40:874–886

    Article  Google Scholar 

  • Černý P, Blevin PL, Cuney M, London D (2005) Granite-related ore deposits. Econ Geol 100th Anniversary Vol, p 337–370

    Google Scholar 

  • Ciobanu CL, Cook NJ, Spry PG (eds) (2006) Special issue: Telluride and selenide minerals in gold deposits – How and why? Mineral Petrol 87:163–384

    Google Scholar 

  • Cline JS,Hofstra AH,Muntean JL, Tosdal RM,Hickey KA (2005) Carlintype gold deposits in Nevada: Critical geologic characteristics and viable models. Econ Geol 100th Anniversary Vol, p 451–484

    Google Scholar 

  • Cox SF (2005) Coupling between deformation, fluid pressures, and fluid flow in ore-producing hydrothermal systems at depth in the crust. Econ Geol 100th Anniversary Vol, p 39–75

    Google Scholar 

  • Evans AM (1993) Ore geology and industrial minerals, 3rd edn. Blackwell Science, Oxford

    Google Scholar 

  • Franklin JM, Gibson HL, Jonasson IR, Galley AG (2005) Volcanogenic massive sulfide deposits. Econ Geol 100th Anniversary Vol, p 523–560

    Google Scholar 

  • Frimmel HE (1993) Earth’s continental gold endowment. Earth Planet Sci Lett 267:45–55

    Article  Google Scholar 

  • Garwin S, Hall R, Watanabe Y (2005) Tectonic setting, geology, and gold and copper mineralization in Cenozoic magmatic arcs of Southeast Asia and the West Pacific. Econ Geol 100th Anniversary Vol, p 891–930

    Google Scholar 

  • Goldfarb RJ, Baker T, Dubé B, Groves DI, Hart CJR, Gosselin P (2005) Distribution, character, and genesis of gold deposits in metamorphic terranes. Econ Geol 100th Anniversary Vol, p 407–450

    Google Scholar 

  • Grew ES, Anovitz LM (eds) (1996) Boron – Mineralogy, petrology and geochemistry. Rev Mineral 33

    Google Scholar 

  • Guilbert JM, Park CF (1986) The geology of ore deposits, 4th edn. Freeman, New York

    Google Scholar 

  • Hannington MD, de Ronde CEJ,Petersen S (2005) Sea-floor tectonics and submarine hydrothermal systems. Econ Geol 100th Anniversary Vol, p 111–141

    Google Scholar 

  • Herrington RJ, Zaykov VV, Maslennikov VV, Brown D, Puchkov VN (2005) Mineral deposits of the Urals and links to geodynamic evolution. Econ Geol 100th Anniversary Vol, p 1069–1095

    Google Scholar 

  • Kesler SE (2005) Ore-forming fluids. Elements 1:13–18

    Article  Google Scholar 

  • Large RR, Bull SW, McGoldrick PJ, Walters S, Derrick GM, Carr GR (2005) Stratiform and stratabound Zn-Pb-Ag deposits in Proterozoic sedimentary basins, Northern Australia. Econ Geol 100th Anniversary Vol, p 931–963

    Google Scholar 

  • Leach DL, Sangster DF, Kelley KD, Large RR, Garven G, Allen CR, Gutzmer J, Walter S (2005) Sediment-hosted lead-zinc deposits: A global perspective. Econ Geol 100th Anniversary Vol, p 561–607

    Google Scholar 

  • Meinert LD, Dipple GM, Nicolescu S (2005) World skarn deposits. Econ Geol 100th Anniversary Vol, p 299–336

    Google Scholar 

  • Petraschek WE, Pohl W (1992) Lagerstättenlehre, 4. Aufl. Schweizerbart, Stuttgart

    Google Scholar 

  • Press F, Siever R (2003) Allgemeine Geologie – Eine Einführung in das System Erde, 3. Aufl. Spektrum, Heidelberg Berlin Oxford

    Google Scholar 

  • Rimstidt DJ (1997) Gangue mineral transport and deposition. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd ed. Wiley, New York, pp 487–516

    Google Scholar 

  • Robert F, Poulsen KH, Cassidy KF, Hodgson CJ (2005) Gold metallogeny of the Superior and Yilgarn cratons. Econ Geol 100th Anniversary Vol, pp 1001–1033

    Google Scholar 

  • Roedder E, Bodnar RJ (1997) Fluid inclusion studies in hydrothermal ore deposits. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd ed. Wiley, New York, pp 657–698

    Google Scholar 

  • Sawkins FJ (1990) Metal deposits and plate tectonics, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schneiderhöhn H (1962) Erzlagerstätten. Kurzvorlesungen zur Einführung und Wiederholung, 4. Aufl. Gustav Fischer, Stuttgart

    Google Scholar 

  • Seedorff E, Dilles JH, Proffett JM Jr, Einaudi MT, Zurcher L, Stavast WJA, Johnson DA, Barton MD (2005) Porphyry deposits: Characteristics and origin of hypogene features. Econ Geol 100th Anniversary Vol, pp 251–298

    Google Scholar 

  • Sillitoe RH, Perelló J (2005) Andean Copper Province: Tectonomagma-tic settings, deposit types, metallogeny, exploration, and discovery. Econ Geol 100th Anniversary Volume, pp 845–890

    Google Scholar 

  • Simmons SF, White NC, John DA (2005) Geological characteristics of epithermal precious and base metal deposits. Econ Geol 100th Anniversary Vol, pp 485–522

    Google Scholar 

  • Stanton RL (1972) Ore petrology. McGraw-Hill, New York

    Google Scholar 

  • Williams PJ, Barton MD, Johnson DA, Fonbote L, De Haller A, Mark G, Oliver NHS, Marschik R (2005) Iron oxide – copper gold deposits: Geology, space-time distribution, and possible models of origin. Econ Geol 100th Anniversary Vol, pp 371–405

    Google Scholar 

  • Yakubchuk AS, Shatov VV, Kirwin D, Edwards A, Tomurtogoo O, Badarch G, Buryak VA (2005) Gold and base metal metallogeny of the Central Asian orogenic supercollage. Econ Geol 100th Anniversary Vol, pp 1035–1068

    Google Scholar 

Zitierte Literatur

  • Baumann L, Nikolsky IL, Wolf M (1979) Einführung in die Geologie und Erkundung von Lagerstätten. Verlag Glückauf, Essen

    Google Scholar 

  • Baumgärtel U, Burow J (2003) Grube Clara. Aufschluss 54:273–404

    Google Scholar 

  • Beck R (1903) Lehre von den Erzlagerstätten. Borntraeger, Berlin

    Google Scholar 

  • Brown KL, Simmons SF (2003) Precious metals in high-temperature geothermal systems in New Zealand. Geothermics 23:619–625

    Article  Google Scholar 

  • Corliss JG, Dymond J, Gordon LI, et al. (1979) Submarine thermal springs on the Galapagos rift. Science 203:1073–1083

    Article  Google Scholar 

  • Goodfellow WD, Franklin JM (1993) Geology, mineralogy and geochemistry of massive sulfides in shallow cores, Middle Valley, Northern Juan de Fuca Ridge. Econ Geol 88:2037–2064

    Article  Google Scholar 

  • Graupner T, Niedermann S, Kempe U, Klemd R, Bechtel A (2006) Origin of ore fluids in the Muruntau gold system: Constraints from noble gas, carbon isotope and halogen data. Geochim Cosmochim Acta 70:5356–5370

    Article  Google Scholar 

  • Groves DI, Goldfarb RJ, Gebre-Mariam M, Hagemann SG, Robert F (1998) Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol Rev 13:7–27

    Article  Google Scholar 

  • Helgeson HC (1964) Complexing and hydrothermal ore deposition. Macmillan, New York

    Google Scholar 

  • Herzig PM (1994) Erzfabriken in der Tiefsee – Die Erforschung mariner Rohstoffvorkommen. die waage 33:20–27

    Google Scholar 

  • Höll R, Maucher A (1981) The stratabound ore deposits in the eastern Alps. In: Wolf KH (ed) Handbook of stratabound and stratiform ore deposits, vol 5. Elsevier, Amsterdam, pp 1–36

    Google Scholar 

  • Hunt J, Baker T, Thorkelson D (2005) Regional-scale Proterozoic IOCG-mineralized breccia systems: Examples from the Wernecke Mountains, Yukon, Canada. Mineral Depos 40:492–514

    Article  Google Scholar 

  • Large DE (1983) Sediment-hosted massive sulphide lead-zinc deposits: An empirical model. In: Sangster DF (ed) Short course in sediment-hosted stratiform lead-zinc deposits. Mineral Ass Canada, Victoria, Canada, pp 1–29

    Google Scholar 

  • Lehmann B (1990) Metallogeny of tin. Lecture Notes Earth Sci, 32, 211 pp. Springer, Berlin Heidelberg New York

    Google Scholar 

  • LindgrenW (1933) Mineral Deposits. 2nd ed.Mc-Graw Hill,NewYork

    Google Scholar 

  • Lowell JD, Guilbert JM (1970) Lateral and vertical alteration mineralization zoning in porphyry ore deposits. Econ Geol 65:373–408

    Article  Google Scholar 

  • Marchig V, Erzinger J, Heinze P-M (1986) Sediment in black smoker area of the East Pacific Rise (18.5°S).EarthPlanet Sci Lett 79:93–106

    Article  Google Scholar 

  • Megaw PKM, Ruiz J, Titley SR (1988) High-temperature, carbonate-hosted Pb-Zn-Ag(Cu) deposits of northern Mexico. Econ Geol 83:1856–1885

    Article  Google Scholar 

  • Mlynarczyk MSJ, Sherlock RL,William-Jones AE (2003) San Rafael, Peru, geology and structure of the worlds richest tin lode. Mineral Depos 38:555–567

    Article  Google Scholar 

  • Möller P, Lüders V (ed) (1993) Formation of hydrothermal vein deposits. A case study of the Pb-Zn, barite and fluorite deposits of the Harz Mountains. Monogr Ser Mineral Depos 30, 291 ff, Borntraeger, Berlin Stuttgart

    Google Scholar 

  • Müller D, Groves DL (2000) Potassic igneous rocks and associated gold-copper mineralization, 3rd edn.Springer,Berlin Heidelberg New York Tokio

    Google Scholar 

  • Munoz M, Premo WR, Courjault-Radé P (2005) Sm-Nd dating of fluorite from the worldclass Montroc fluorite deposit, southern Massif Central, France. Mineral Depos 39:970–975

    Article  Google Scholar 

  • Roedder E (1968) The noncolloidal origin of „ colloform“ textures in sphalerite ores. Econ Geol 63:451–471

    Article  Google Scholar 

  • Rosa CJP, McPhie J, Relvas JMRS, Pereira Z, Oliveira T, Pacheco N (2008) Facies analyses and volcanic setting of the giant Neves Corvo massive sulfide deposit, Iberian Pyrite Belt, Portugal. Mineral Depos 43:449–466

    Article  Google Scholar 

  • Russell MJ, Solomon M, Walshe JL (1981) The genesis of sediment-hosted, exhalative zinc and lead deposits. Mineral Depos 16:113–127

    Article  Google Scholar 

  • Schneiderhöhn H (1941) Lehrbuch der Erzlagerstättenkunde. Gustav Fischer, Jena

    Google Scholar 

  • Schwenzer SP, Tommaseo CE, Kersten M, Kirnbauer T (2001) Speciation and oxidation kinetics of arsenic in thermal springs of Wiesbaden spa, Germany. Fresenius J Anal Chem 371:927–933

    Article  Google Scholar 

  • Sillitoe RH (1973) The tops and bottoms of porphyry copper deposits. Econ Geol 68:799–815

    Article  Google Scholar 

  • Stefansson A, Seward TM (2004) Gold (I) complexing in aqueous sulphide solutions to 500 °C at 500 bar. Geochim Cosmochim Acta 68:4121–4143

    Article  Google Scholar 

  • Tivey MK, Delaney JR (1986) Growth of large sulfide structures on the Endeavour Segment of the Juan da Fuca Ridge. Earth Planet Sci Lett 79:303–317

    Article  Google Scholar 

  • Turner RJW, Ames DE, Franklin JM, Goodfellow WD, Leitch CHB, Höy T (1993) Character of active hydrothermal mounds and nearby altered hemipelagic sediments in the hydrothermal areas of Middle Valley, northern Juan de Fuca Ridge: Data of shallow cores. Canad Mineral 31:973–995

    Google Scholar 

  • Vikentyev IV, Yudovskaya MA, Mokhov AV, Kerzin AL, Tsepin AV (2004) Gold and PGE in massive sulfide ore of the Uzelginsk deposit, southern Urals, Russia. Canad Mineral 42:651–665

    Article  Google Scholar 

  • von Damm KL, Buttermore LG, Oosting SE, Bray AM, Fornari DJ, Lilley MD, Shanks WC III (1997) Direct observation of the evolution of a seafloor“black smoker” from vapor to brine.Earth Planet Sci Lett 149:101–111

    Article  Google Scholar 

  • Wagner T, Kirnbauer T, Boyce AJ, Fallick AE (2005) Barite-pyrite mineralization of the Wiesbaden thermal springsystem, Germany: A 500-kyr record of geochemical evolution. Geofluids 5:124–139

    Article  Google Scholar 

  • Weihed P, Williams PJ (2005) Metallogeny of the northern Fennoscandian Shield: A set of papers on Cu-Au and VMS deposits of northern Sweden. Mineral Dep 40:347–350

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Okrusch, M., Matthes †, S. (2010). Hydrothermale Erz- und Minerallagerstätten. In: Mineralogie. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78201-8_21

Download citation

Publish with us

Policies and ethics