Skip to main content

Markerless Augmented Reality for Robotic Helicoptor Applications

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4931))

Abstract

The objective of this research is to apply markerless Augmented Reality (AR) techniques to aid in the visualisation of robotic helicopter related tasks. Conventional robotic AR applications work well with markers in prepared environments but are infeasible in outdoor settings. In this paper, we present preliminary results from a real time markerless AR system for tracking natural features in an agricultural scene. By constructing a virtual marker under a known initial configuration of the robotic helicopter, camera and the ground plane, the camera pose can be continuously tracked using the natural features from the image sequence to perform augmentation of virtual objects. The experiments are simulated on a mock-up model of an agricultural farm and the results show that the current AR system is capable of tracking the camera pose accurately for translational motions and roll rotations. Future work includes reducing jitter in the virtual marker vertices to improve camera pose estimation accuracy for pitch and yaw rotations, and implementing feature recovery algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Milgram, P., Kishino, F.: A taxonomy of mixed reality visual display. IEICE Transactions on Information Systems E77-D, 1321–1329 (1994)

    Google Scholar 

  2. Cheok, A.D., et al.: Capture the flag: a multiplayer online game for phone users. In: Proceedings of the Ninth IEEE International Symposium on Wearable Computers, 2005, October 18–21, 2005, pp. 222–223 (2005)

    Google Scholar 

  3. Hughes, C.E., et al.: Mixed reality in education, entertainment, and training. IEEE Computer Graphics and Applications 25(6), 24–30 (2005)

    Article  Google Scholar 

  4. Sandor, C., et al.: Immersive mixed-reality configuration of hybrid user interfaces. In: Proceedings of the Fourth IEEE and ACM International Symposium on Mixed and Augmented Reality, 2005, October 5–8, 2005, pp. 110–113 (2005)

    Google Scholar 

  5. Thomas, B., et al.: Arquake: An outdoor/indoor augmented reality first person application. In: The Fourth International Symposium on Wearable Computers, 2000, October 16–17, 2000, pp. 139–146 (2000)

    Google Scholar 

  6. Benko, H., Ishak, E.W., Feiner, S.: Collaborative mixed reality visualization of an archaeological excavation. In: Third IEEE and ACM International Symposium on Mixed and Augmented Reality, 2004. ISMAR 2004, November 2–5, 2004, pp. 132–140 (2004)

    Google Scholar 

  7. Vlahakis, V., et al.: Personalized augmented reality touring of archaeological sites with wearable and mobile computers. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 15–22. Springer, Heidelberg (2002)

    Google Scholar 

  8. Collett, T., MacDonald, B.: Augmented reality visualisation for player. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp. 3954–3959 (2006)

    Google Scholar 

  9. Rosenthal, M., et al.: Augmented reality guidance for needle biopsies: A randomized, controlled trial in phantoms. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 240–248. Springer, Heidelberg (2001)

    Google Scholar 

  10. Livingston, M.A., et al.: An augmented reality system for military operations in urban terrain. In: Proceedings of the Interservice / Industry Training, Simulation, & Education Conference (I/ITSEC 2002), Orlando, December 2–5 (2002)

    Google Scholar 

  11. Azuma, R.T.: A survey of augmented reality. Presence: Teleoperators and Virtual Environments 6(4), 355–385 (1997)

    Google Scholar 

  12. Azuma, R., et al.: Recent advances in augmented reality. IEEE Computer Graphics and Applications 21(6), 34–47 (2001)

    Article  Google Scholar 

  13. Azuma, R.T.: 21. In: Mixed Reality: Merging Real and Virtual Worlds, pp. 379–390. Springer, Heidelberg (1999)

    Google Scholar 

  14. Bimber, O., Raskar, R.: Spatial Augmented Reality: Merging Real and Virtual Worlds. A.K. Peters, Ltd., Natick, MA, USA (2005)

    Google Scholar 

  15. Kato, H., Billinghurst, M.: Marker tracking and hmd calibration for a video-based augmented reality conferencing system. In: Proceedings of the 2nd IEEE and ACM International Workshop on Augmented Reality, 1999 (IWAR 1999), pp. 85–94 (1999)

    Google Scholar 

  16. You, S., Neumann, U., Azuma, R.: Orientation tracking for outdoor augmented reality registration. IEEE Computer Graphics and Applications 19(6), 36–42 (1999)

    Article  Google Scholar 

  17. Cornelis, K., et al.: Augmented reality using uncalibrated video sequences. In: Pollefeys, M., et al. (eds.) SMILE 2000. LNCS, vol. 2018, pp. 144–160. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Wu, J., Yuan, Z., Chen, J.: A registration method of ar based on fundamental matrix. In: 2005 IEEE International Conference Mechatronics and Automation, vol. 3, pp. 1180–1184 (2005)

    Google Scholar 

  19. Yuan, M., Ong, S., Nee, A.: Registration using natural features for augmented reality systems. IEEE Transactions on Visualization and Computer Graphics 12(4), 569–580 (2006)

    Article  Google Scholar 

  20. Pettersen, T., et al.: Augmented reality for programming industrial robots. In: Proceedings of the Second IEEE and ACM International Symposium on Mixed and Augmented Reality, 2003, pp. 319–320 (2003)

    Google Scholar 

  21. Stilman, M., et al.: Augmented reality for robot development and experimentation. Technical Report CMU-RI-TR-05-55, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (November 2005)

    Google Scholar 

  22. Sugimoto, M., et al.: Time follower’s vision: a teleoperation interface with past images. IEEE Computer Graphics and Applications 25(1), 54–63 (2005)

    Article  Google Scholar 

  23. Brujic-Okretic, V., et al.: Remote vehicle manoeuvring using augmented reality. In: International Conference on Visual Information Engineering, 2003. VIE 2003, pp. 186–189 (2003)

    Google Scholar 

  24. Sugiura, R., et al.: Field information system using an agricultural helicopter towards precision farming. In: Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2003. AIM 2003, vol. 2, pp. 1073–1078 (2003)

    Google Scholar 

  25. Archer, F., et al.: Introduction, overview, and status of the microwave autonomous copter system (macs). In: Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, 2004. IGARSS 2004, vol. 5, pp. 3574–3576 (2004)

    Google Scholar 

  26. Yokobori, J., et al.: Variable management for uniform potato yield using remote sensing images with unmanned helicopter. In: ASAE Annual Meeting (2003)

    Google Scholar 

  27. Noguchi, N., Ishii, K., Sugiura, R.: Remote-sensing technology for vegetation monitoring using an unmanned helicopter. In: Biosystems Engineering, pp. 369–379 (2005)

    Google Scholar 

  28. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence (IJCAI 1981), April 1981, pp. 674–679 (1981)

    Google Scholar 

  29. Shi, J., Tomasi, C.: Good features to track. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1994. Proceedings CVPR 1994, vol. 1994, pp. 593–600 (1994)

    Google Scholar 

  30. Klippenstein, J., Zhang, H.: Quantitative evaluation of feature extractors for visual slam. In: Fourth Canadian Conference on Computer and Robot Vision, 2007. CRV 2007, pp. 157–164 (2007)

    Google Scholar 

  31. Yao, A., Calway, A.: Robust estimation of 3-d camera motion for uncalibrated augmented reality. Technical Report CSTR-02-001, Department of Computer Science, University of Bristol (March 2002)

    Google Scholar 

  32. Kameda, Y., Takemasa, T., Ohta, Y.: Outdoor see-through vision utilizing surveillance cameras. In: Third IEEE and ACM International Symposium on Mixed and Augmented Reality, 2004. ISMAR 2004, pp. 151–160 (2004)

    Google Scholar 

  33. Ong, S.K., Yuan, M.L., Nee, A.Y.C.: Tracking points using projective reconstruction for augmented reality. In: Proceedings of the 3rd international conference on Computer graphics and interactive techniques in Australasia and South East Asia. GRAPHITE 2005, pp. 421–424. ACM Press, New York (2005)

    Chapter  Google Scholar 

  34. Behringer, R., Park, J., Sundareswaran, V.: Model-based visual tracking for outdoor augmented reality applications. In: Proceedings of the International Symposium on Mixed and Augmented Reality, 2002. ISMAR 2002, pp. 277–322 (2002)

    Google Scholar 

  35. Hartley, R.: In defense of the eight-point algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(6), 580–593 (1997)

    Article  Google Scholar 

  36. Hartley, R.I., Zisserman, A.: 8. In: Multiple View Geometry in Computer Vision, 2nd edn., Cambridge University Press, Cambridge (2003)

    Google Scholar 

  37. Schweighofer, G., Pinz, A.: Robust pose estimation from a planar target. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(12), 2024–2030 (2006)

    Article  Google Scholar 

  38. Wagner, D., Schmalstieg, D.: Artoolkitplus for pose tracking on mobile devices. In: Computer Vision Winter Workshop 2007, February 6-8 (2007)

    Google Scholar 

  39. OGRE Ogre 3d: Object-oriented graphics rendering engine, http://www.ogre3d.org

  40. Gerkey, B.P., Vaughan, R.T., Howard, A.: The player/stage project: Tools for multi-robot and distributed sensor systems. In: Proceedings of the International Conference on Advanced Robotics (ICAR 2003), June 30–July 3, 2003, pp. 317–323 (2003)

    Google Scholar 

  41. Skrypnyk, I., Lowe, D.: Scene modelling, recognition and tracking with invariant image features. In: Third IEEE and ACM International Symposium on Mixed and Augmented Reality, 2004. ISMAR 2004, pp. 110–119 (2004)

    Google Scholar 

  42. Lourakis, M., Argyros, A.: Vision-based camera motion recovery for augmented reality. In: CGI 2004. Proceedings of the Computer Graphics International, pp. 569–576. IEEE Computer Society Press, Washington, DC, USA (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerald Sommer Reinhard Klette

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, I.YH., MacDonald, B., Wünsche, B. (2008). Markerless Augmented Reality for Robotic Helicoptor Applications. In: Sommer, G., Klette, R. (eds) Robot Vision. RobVis 2008. Lecture Notes in Computer Science, vol 4931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78157-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78157-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78156-1

  • Online ISBN: 978-3-540-78157-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics