Skip to main content

On the Merge of Factor Canonical Bases

  • Conference paper
Book cover Formal Concept Analysis (ICFCA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4933))

Included in the following conference series:

Abstract

Formal concept analysis (FCA) has a significant appeal as a formal framework for knowledge discovery not least because of the mathematical tools it provides for a range of data manipulations such as splits and merges. We study the computation of the canonical basis of a context starting from the bases of two apposed subcontexts, called factors. Improving on a previous method of ours, we provide here a deeper insight into its pivotal implication family and show it represents a relative basis. Further structural results allow for more efficient computation of the global basis, in particular, the relative one admits, once added to factor bases, an inexpensive reduction. A method implementing the approach as well as a set of further combinatorial optimizations is shown to outperform NextClosure on at least one dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases (VLDB 1994), September 1994, Santiago, Chile, pp. 487–499 (1994)

    Google Scholar 

  2. Armstrong, W.: Dependency Structures of Data Base Relationships. In: Rosenfeld, J. (ed.) Proceedings of the 1974 IFIP Congress, Information Processing, Stockholm (SE), August 5-10, 1974, vol. 74, pp. 580–583 (1974)

    Google Scholar 

  3. Birkhoff, G.: Lattice Theory. AMS, 3rd edn., vol. XXV. AMS Colloquium Publications (1967)

    Google Scholar 

  4. Day, A.: The lattice theory of functional dependencies and normal decompositions. Intl. J. of Algebra and Computation 2(4), 409–431 (1992)

    Article  MATH  Google Scholar 

  5. Demetrovics, J., Libkin, L., Muchnik, I.B.: Functional dependencies in relational databases: A lattice point of view. Discrete Applied Mathematics 40(2), 155–185 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Denecke, K., Erné, M., Wismath, S. (eds.): Galois connections and Applications. Kluwer Academic Publishers, Dordrecht (2004)

    MATH  Google Scholar 

  7. Djoufak Kengue, J.F., Valtchev, P., Tayou Djamegni, C.: A parallel algorithm for lattice construction. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 248–263. Springer, Heidelberg (2005)

    Google Scholar 

  8. Duquenne, V.: Contextual implications between attributes and some representation properties for finite lattices. In: Ganter, B., Wille, R., Wolf, K.-E. (eds.) Beitrage zur Begriffsanalyse, Mannheim, pp. 213–239 (1987)

    Google Scholar 

  9. Ganter, B.: Two basic algorithms in concept analysis. preprint 831, Technische Hochschule, Darmstadt (1984)

    Google Scholar 

  10. Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  11. Guigues, J.L., Duquenne, V.: Familles minimales d’implications informatives résultant d’un tableau de données binaires. Mathématiques et Sciences Humaines 95, 5–18 (1986)

    MathSciNet  Google Scholar 

  12. Kautz, H.A., Kearns, M.J., Selman, B.: Horn approximations of empirical data. Artificial Intelligence 74(1), 129–145 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Khardon, R.: Translating between horn representations and their characteristic models. Journal of Artificial Intelligence Research 3, 349–372 (1995)

    MATH  Google Scholar 

  14. Maier, D.: Minimum covers in the relational database model. In: Eleventh Annual ACM Symposium on Theory of Computing (STOC 1979), pp. 330–337. ACM Press, New York (1979)

    Chapter  Google Scholar 

  15. Maier, D.: The theory of Relational Databases. Computer Science Press (1983)

    Google Scholar 

  16. Pasquier, N., et al.: Efficient Mining of Association Rules Using Closed Itemset Lattices. Information Systems 24(1), 25–46 (1999)

    Article  Google Scholar 

  17. Pei, J., Han, J., Mao, R.: CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets. In: Proc. SIGMOD Workshop DMKD 2000, Dallas (TX), pp. 21–30 (2000)

    Google Scholar 

  18. Stumme, G.: Attribute exploration with background implications and exceptions. In: Bock, H.-H., Polasek, W. (eds.) Data Analysis and Information Systems. Statistical and Conceptual approaches. Studies in classification, data analysis and knowledge organization, vol. 7, pp. 457–469. Springer, Heidelberg (1996)

    Google Scholar 

  19. Taouil, R., et al.: Mining bases for association rules using closed sets. In: Proc. of the ICDE-2000, San Diego (CA), p. 307. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  20. Valtchev, P., Duquenne, V.: Towards scalable divide-and-conquer methods for computing concepts and implications. In: SanJuan, E., et al. (eds.) Proc. of the 4th Intl. Conf. Journées de l’Informatique Messine (JIM 2003): Knowledge Discovery and Discrete Mathematics, Metz (FR), INRIA, 3-6 September 2003, pp. 3–14 (2003)

    Google Scholar 

  21. Valtchev, P., Missaoui, R., Lebrun, P.: A partition-based approach towards building Galois (concept) lattices. Discrete Mathematics 256(3), 801–829 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wild, M.: Computations with finite closure systems and implications. In: Li, M., Du, D.-Z. (eds.) COCOON 1995. LNCS, vol. 959, pp. 111–120. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  23. Wille, R.: Restructuring lattice theory: An approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered sets, pp. 445–470. Reidel, Dordrecht-Boston (1982)

    Google Scholar 

  24. Zaki, M.J.: Generating Non-Redundant Association Rules. In: Proc. of the 6th Intl. Conf. on Knowledge Discovery and Data Mining (KDD 2000), Boston (MA), pp. 34–43 (2000)

    Google Scholar 

  25. Zaki, M.J., Hsiao, C.-J.: ChARM: An Efficiently Algorithm for Closed Itemset Mining. In: Grossman, R., et al. (eds.) Proceedings of the 2nd SIAM International Conference on Data Mining (ICDM 2002) (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Raoul Medina Sergei Obiedkov

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Valtchev, P., Duquenne, V. (2008). On the Merge of Factor Canonical Bases. In: Medina, R., Obiedkov, S. (eds) Formal Concept Analysis. ICFCA 2008. Lecture Notes in Computer Science(), vol 4933. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78137-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78137-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78136-3

  • Online ISBN: 978-3-540-78137-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics