Skip to main content

Bone Metastases 1: Spine

  • Chapter

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Key Points

• The radiograph is insensitive in terms of identifying metastases which have involvement of <50% of the vertebral body.

• Sagittal T1-weighted and STIR MR imaging sequences are useful screening approaches in assessment of the presence of spinal metastases.

• In the presence of “red flag” symptoms, MRI should be carried out as soon as is reasonably practical.

• Classically the intervertebral disc is not involved in metastatic disease which is helpful in trying to differentiate between metastasis and infection.

• In differentiating malignant from benign vertebral collapse using MRI, the presence of posterior bowing of the vertebral body, heterogeneous abnormal signal throughout the body with signal extension into the pedicle and posterior elements, and paravertebral and epidural soft tissue extension all favour a malignant aetiology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Algra P, Heimans JJ, Valk J, Nauta JJ, Lachniet M, Van Kooten B (1992) Do metastases in vertebrae begin in the body or in the pedicles? Imaging study in 45 patients. AJR 158:1275–1279

    PubMed  CAS  Google Scholar 

  • Asdourian PL, Weidenbaum M, DeWald RL, Hammerberg KW, Ramsey RG (1990) The pattern of vertebral involvement in metastatic vertebral breast cancer. Clin Orthop 250:164–170

    PubMed  Google Scholar 

  • Batson OV (1942) The role of the vertebral veins in metastatic processes. Ann Intern Med 16:38–45

    Google Scholar 

  • Batson OV (1957) The vertebral vein system. AJR 78(2):195–212

    CAS  Google Scholar 

  • Baur A, Stabler A, Bruning R et al. (1998) Diffusion weighted MR imaging of bone marrow. Differentiation of benign versus pathologic compression fractures. Radiology 207:349–356

    PubMed  CAS  Google Scholar 

  • Baur A, Huber A, Ertl-Wagner B et al. (2001) Diagnostic value of increased diffusion weighting of a steady-state free precession sequence for differentiating acute benign osteoporotic fractures from pathologic vertebral compression fractures. AJNR 22:366–372

    PubMed  CAS  Google Scholar 

  • Baur A, Dietrich O, Reiser M (2003) Diffusion-weighted imaging of bone marrow: current status. Eur Radiol 13:1699–1708

    Article  PubMed  Google Scholar 

  • Breschet G (1832) Récherches anatomiques, physiologiques et pathologiques sur le système veineux et voie anatomiques. Masson, Paris

    Google Scholar 

  • Byun WM, Jang HW, Kim SW, Jang SH, Ahn SH, Ahn MW (2007) Diffusion weighted magnetic resonance imaging of sacral insufficiency fractures; comparison with metastases of the sacrum. Spine 32(26):E820–E824

    Article  PubMed  Google Scholar 

  • Chassang M, Grimaud A, Cucchi JM, Novellas S, Amoretti N, Chevallier P, Brunton JN (2007) Can low dose computed tomographic scan of the spine replace conventional radiography? An evaluation basd on imaging myelomas, bone metastases, and fractures from osteoporosis. Clin Imaging 31:225–227

    Article  PubMed  Google Scholar 

  • Clines GA, Guise TA (2005) Hypercalcaemia of malignancy and basic research on mechanisms responsible for osteolytic and osteoblastic metastasis to bone. Endocrinol Relat Cancer 12(3):549–583

    CAS  Google Scholar 

  • Daffner RH, Lupetin AR, Dash N et al. (1986) MRI in the detection of malignant infiltration of bone marrow. AJR 146:353–358

    PubMed  CAS  Google Scholar 

  • Dagirmanjian A, Schils J, McHenry M, Modic MT (1996) MR imaging of vertebral osteomyelitis revisited. AJR 167:1539–1543

    PubMed  CAS  Google Scholar 

  • Edelstyn GA, Gillespie PJ, Grebbell FS (1967) The radiological demonstration of osseous metastases. Experimental observations. Clin Radiol 18:158–162

    Article  PubMed  CAS  Google Scholar 

  • Eustace S, Tello R, DeCarvalho V et al. (1997) A comparison of whole body turbo STIR MR imaging and planar 99mTC-methylene diphosphonate scintigraphy in the examination of patients with suspected skeletal metastases. AJR 169:1655–1661

    PubMed  CAS  Google Scholar 

  • Firooznia H, Pinto RS, Lin JP, Baruch HH, Zausner J (1976) Chordoma: radiologic evaluation of 20 cases. AJR 127:979–805

    Google Scholar 

  • Galasko CSB (1972) Skeletal metastases and mammary cancer. Ann R Coll Engl 50(1):3–28

    CAS  Google Scholar 

  • Galasko CSB (1981) The anatomy and pathways of skeletal metastases. In: Weiss L, Gilbert HA (eds) Bone metastasis. Hall, Boston, p 49

    Google Scholar 

  • Galasko CSB (1982) Mechanisms of lytic and blastic metastatic disease of bone. Clin Orthop 169:20–27

    PubMed  Google Scholar 

  • Ghanem N, Kelly T, Altehoefer C et al. (2004) Whole body MRI in comparison to skeletal scintigraphy for detection of skeletal metastases in patients with solid tumours. Radiology 44:864–873

    CAS  Google Scholar 

  • Guillevan R, Vallee J-N, Lafitte F, Menuel C, Duverneuil N-M, Chiras J (2007) Spine metastasis imaging: review of the literature. J Neuroradiol 34:311–321

    Article  Google Scholar 

  • Guise TA (2000) Molecular mechanisms of osteolytic bone metastases. Cancer 88 (12 Suppl):2892–2898

    Article  PubMed  CAS  Google Scholar 

  • Guise TA, Kozlow WM, Heras-Herzig A, Padalecki SS, Yin JJ, Chirgwin JM (2005) Molecular mechanisms of breast cancer metastases to bone. Clin Breast Cancer 2 (5 Suppl):546–553

    Google Scholar 

  • Gupta G, Robertson P, Szer J (2007) Focal lesions on magnetic resonance imaging in aplastic anaemia: multiple metastases or haemopoetic marrow. Austral Radiol 51:8110–8114

    Google Scholar 

  • Haller J, André P, Resnick D, Miller C, Howard BA, Mitchell MJ, Schils JP, Sartoris DJ, Trudell D (1990a) Detection of thoracolumbar vertebral body destruction with lateral spine radiography. Part 1: Investigation in cadavers. Invest Radiol 25:517–522

    Article  CAS  Google Scholar 

  • Haller J, André P, Resnick D, Miller C, Howard BA, Mitchell MJ, Schils JP, Sartoris DJ, Trudell D (1990b) Detection of thoracolumbar vertebral body destruction with lateral spine radiography. Part 2: Clinical investigation with computed tomography. Invest Radiol 25:523–531

    CAS  Google Scholar 

  • Horger M, Claussen CD, Bross-Bach U, Vonthein R, Trabold T, Heuschmid M, Pfannenberg C (2005) Whole body low dose multidetector row-CT in the diagnosis of multiple myeloma: an alternative to conventional radiography. Eur J Radiol 54:289–297

    Article  PubMed  Google Scholar 

  • Hsu CY, Yu CW, Wu MZ, Chen BB, Huang KM, Shih TTF (2008) Unusual manifestations of vertebral osteomyelitis: intraosseous lesions mimicking metastases. AJNR 29:1104–1110

    PubMed  CAS  Google Scholar 

  • Hubbard DD, Gunn DR (1972) Secondary carcinoma of the spine with destruction of the intervertebral disk. Clin Orthop 88:86–88

    Article  PubMed  CAS  Google Scholar 

  • Jacobson HG, Poppel MH, Shapiro JH, Grossberger S (1958) The vertebral pedicle sign: a roentgen finding to differentiate metastatic carcinoma from multiple myeloma. AJR 80:817–821

    CAS  Google Scholar 

  • Jung N-Y, Jee W-H, Ha K-Y, Park C-K, Byun J-Y (2004) Discrimination of tuberculous spondylitis from pyogenic spondylitis on MRI. AJR 182:1405–1410

    PubMed  Google Scholar 

  • Khattry N, Thulkar S, Das A, Khan SA, Bakhshi S (2007) Spinal tuberculosis mimicking malignancy; aptypical imaging features. Indian J Paediatr 74:297–298

    Article  Google Scholar 

  • Kubota T, Yamada K, Ito H, Kizu O, Nishimura T (2005) High resolution imaging of the spine using multidetector non-computed tomography: differentiation between benign and malignant vertebral compression fractures. J Comput Assist Tomogr 29(5):712–718

    Article  PubMed  Google Scholar 

  • Laredo JD, el Quessar A, Bossard P, Vuillemin-Bodaghi V (2001) Vertebral tumours and pseudotumours. Radiol Clin North Am 39 (1):137–163, vi

    Article  PubMed  CAS  Google Scholar 

  • Lodwick GS (1964) Reactive response to local injury in bone. Radiol Clin North Am 50:209–219

    Google Scholar 

  • Major NM, Helms CA, Richardson WJ (2000) The “mini brain”: plasmacytoma in a vertebral body on MR imaging. AJR 175(1):261–263

    PubMed  CAS  Google Scholar 

  • Manishen WJ, Sivananthan K, Orr FW (1986) Resorbing bone stimulates tumour cell growth. A role for the host microenvironment in bone metastasis. Am J Pathol 123:39

    PubMed  CAS  Google Scholar 

  • McCarthy EF (2007) CT-guided needle biopsies of bone and soft tissue tumours: a pathologist’s perspective. Skeletal Radiol 36:181–182

    Article  PubMed  Google Scholar 

  • McMenamin DS, Stuckey SL, Potgleter GJ (2007) T1 hyperintense vertebral column melanoma metastases. AJNR 28:1817–1818

    PubMed  CAS  Google Scholar 

  • Modic MT, Feiglin DH, Piralno DW et al. (1985) Vertebral osteomyelitis: assessment using MR. Radiology 157:157–166

    PubMed  CAS  Google Scholar 

  • Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR (1988) Degenerative disc disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 166:193–199

    PubMed  CAS  Google Scholar 

  • Mulligan ME, McRae GA, Murphey MD (1999) Imaging features of primary lymphoma of bone. AJR 173(6):1691–1697

    PubMed  CAS  Google Scholar 

  • Mundy GR, Spiro TP (1981) The mechanism of bone metastasis and bone destruction by tumour cells. In: Weiss L, Gilbert HA (eds) Bone metastasis. Hall, Boston, p 64

    Google Scholar 

  • Mundy GR, Luben RA, Raisz LG, Oppenheim JJ, Buell DN (1974a) Bone resorbing activity in supernatants from lymphoid cell lines. N Engl J Med 290:867–871

    CAS  Google Scholar 

  • Mundy GR, Raisz LG, Cooper RA, Schechter GP, Salmon SE (1974b) Evidence for the secretion of an osteoclast stimulating factor in myeloma. N Engl J Med 291:1041–1046

    CAS  Google Scholar 

  • Mundy GR, Raisz LG, Shapiro JL, Bandelin JG, Turcotte RJ (1977) Big and little forms of osteoclast activating factor. J Clin Invest 60:122–128

    Article  PubMed  CAS  Google Scholar 

  • Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 1:571–573

    Article  Google Scholar 

  • Resnick D, Niwayama G (1978) Intervertebral disc abnormalities associated with vertebral metastasis: observations in patients and cadavers with prostatic cancer. Invest Radiol 13:182–190

    Article  PubMed  CAS  Google Scholar 

  • Rodallec MH, Feydy A, Larousserie F, Anract P, Campagna R, Babinet A, Zins M, Drape J-L (2008) Diagnostic imaging of solitary tumours of the spine: what to do and say. Radiographics 28:1019–1041

    Article  PubMed  Google Scholar 

  • Ross PM, Fleming JL (1976) Vertebral body osteomyelitis. Spectrum and natural history. A retrospective analysis of 37 cases. Clin Orthop 118:190–198

    PubMed  Google Scholar 

  • Royal College of Radiologists, London (2007) Making the best use of clinical radiology services. Referral guidelines, 6th edn

    Google Scholar 

  • Schmidt GP, Schoenberg SO, Reiser, Baur-Melnyk A (2005) Whole body MR imaging of bone marrow. Eur J Radiol 55:33–40

    Article  PubMed  CAS  Google Scholar 

  • Steinborn M, Heuch AF, Tiling R, Bruegel M, Gauger L, Reiser MF (1999) Whole body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr 23:123–129

    Article  PubMed  CAS  Google Scholar 

  • Taneichi H, Kaneda K, Takeda N, Abumi K, Satoh S (1997) Risk factors and probability of vertebral body collapse in metastases of the thoracic and lumbar spine. Spine 22(3):239–245

    Article  PubMed  CAS  Google Scholar 

  • Tyrrell PNM, Cassar-Pullicino V, McCall IW (1995) Short communication. A lateral will do. Br J Radiol 68:1371

    Google Scholar 

  • Voss SD, Murphey MD, Hall FM (2001) Solitary osteosclerotic plasmacytoma: association with demyelinating polyneuropathy and amyloid deposition. Skeletal Radiol 30(9):527–529

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Allen L, Fung E, Chan CC, Chan JC, Griffith JF (2005) Bone scintigraphy in common tumours with osteolytic components. Clin Nucl Med 30(10):655–671

    Article  PubMed  CAS  Google Scholar 

  • Yasuma T, Yamauchi Y, Arai K, Makino E (1989) Histopathologic study on tumor infiltration into the intervertebral disc. Spine 14(11):1245–1248

    Article  PubMed  CAS  Google Scholar 

  • Yochum TR, Sellers LT, Oppenheimer DA, Peterson CK, Kirton CW, Dal Mas EC, Anderson AL (1990) The sclerotic pedicle: How many causes are there? Skeletal Radiol 19:411–417

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tyrrell, P., Cassar-Pullicino, V., Lalam, R., Tins, B. (2009). Bone Metastases 1: Spine. In: Davies, A., Sundaram, M., James, S. (eds) Imaging of Bone Tumors and Tumor-Like Lesions. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77984-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77984-1_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77982-7

  • Online ISBN: 978-3-540-77984-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics