Skip to main content

Rubber-Like Entropy Elasticity of a Glassy Alloy [1]

  • Chapter
Frontiers in Materials Research

Part of the book series: Advances in Materials Research ((ADVSMATERIALS,volume 10))

  • 1316 Accesses

Summary

The thermoelastic effect is monopolistically characteristic of rubbers in solids. Here we report observations of thermal-induced entropy elasticity for a glassy alloy, Pd40Cu30Ni10P20 in terms of acoustoelasticity and the Gough–Joule effect. Seven kinds of elastic parameters of the glassy alloy have been simultaneously measured as a function of temperature ranging from 298 to 673 K. The decreases in elastic moduli, Poisson’s ratio, and the increase in tension below the second-order like-phase transition temperature suggest rubber-like thermal dynamic micro-Brownian stretching, described as F (Pa) = 0.282 T + 562, which may be associated with the rotational and vibrational motions of polyhedron clusters. The glassy alloy also showed the Gough–Joule effect at room temperature. In short, the glassy alloy has some rubbery characteristics that we have never before observed for ordinary crystalline alloys and inorganic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Fukuhara, A. Inoue, N. Nishiyama, Appl. Phys. Lett. 89, 101903 (2006)

    Article  ADS  CAS  Google Scholar 

  2. P. Chaudhari, D. Turnbull, Science 199, 11 (1978)

    Google Scholar 

  3. C. Park, M. Saito, Y. Waseda, et al., Mater. Trans. Jpn. Inst. Met. 40, 491 (1999)

    CAS  Google Scholar 

  4. A. Van Den Beule, J. Sietsma, Acta. Metall. Mater. 38, 383 (1990)

    Article  Google Scholar 

  5. A. Makino, A. Inoue, T. Mizushima, Mater. Trans. Jpn. Inst. Met. 41, 1471 (2000)

    CAS  Google Scholar 

  6. Y. Kawamura, T. Nakamura, A. Inoue, Scripta Mater. 39, 301 (1998)

    Article  CAS  Google Scholar 

  7. M. Fukuhara, I. Yamauchi, J. Mater. Sci. 28, 4681 (1993)

    Article  ADS  CAS  Google Scholar 

  8. M. Fukuhara, A. Sanpei, J. Polym. Sci. Part. B: Polym. Phys. 34, 1579 (1596)

    Article  Google Scholar 

  9. N. Nishiyama, A. Inoue, Mater. Trans. Jpn. Inst. Met. 37, 1531 (1997)

    Google Scholar 

  10. M. Fukuhara, T. Tsubouchi, Chem. Phys. Lett. 371, 184 (2003)

    Article  ADS  CAS  Google Scholar 

  11. N. Nishiyama, A. Inoue, J.Z. Jiang, Appl. Phys. Lett. 78, 1985 (2001)

    Article  ADS  CAS  Google Scholar 

  12. M. Fukuhara, A. Sanpei, Philo. Mag. Lett. 80, 325 (2000)

    Article  CAS  Google Scholar 

  13. M. Fukuhara, M. Yagi, A. Matsuo, Phys. Rev. B 65, 224210 (2002)

    Article  ADS  CAS  Google Scholar 

  14. M. Fukuhara, A. Sampei, Jpn. J. Appl. Phys. 39, 2916 (2000)

    Article  ADS  CAS  Google Scholar 

  15. M. Fukuhara, A.H. Matsui, M. Takeyama, Chem. Phys. 258, 97 (2000)

    Article  CAS  Google Scholar 

  16. F.E. Wang, B.F. DeSavage, W.J. Buehler, J. Appl. Phys. 39, 2166 (1968)

    Article  ADS  CAS  Google Scholar 

  17. M. Fukuhara, A. Sampei, Phys. Rev. B 49, 13099 (1994)

    Article  ADS  CAS  Google Scholar 

  18. H.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon, London, 1959), p. 438

    Google Scholar 

  19. T. Kojima, Dissertation, Department of Material Science, Osaka University, 1999

    Google Scholar 

  20. O. Haruyama, Private Communication, University of Tokyo

    Google Scholar 

  21. M. Fukuhara, A. Sampei, Jpn. J. Appl. Phys. 35(Part 1, No. 5B), 3218 (1996)

    Article  ADS  CAS  Google Scholar 

  22. R. Kubo, Elasticity in Rubber (Japanese) (Shokabo, Tokyo, 1996)

    Google Scholar 

  23. R. Houwink, Trans. Faraday Soc. 32, 131 (1936)

    Article  CAS  Google Scholar 

  24. S. Spinner, G.W. Cleek, J. Appl. Phys. 31, 1407 (1960)

    Article  ADS  CAS  Google Scholar 

  25. H.M. James, E. Guth, J. Chem. Phys. 11, 455 (1943)

    Article  ADS  CAS  Google Scholar 

  26. S.R. Elliot, Nature 354, 445 (1991)

    Google Scholar 

  27. S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, 3rd edn. (Tokyo, McGraw-Hill, Kogakusha, 1970), p. 244

    Google Scholar 

  28. R.L. Anthony, R.H. Caston, E. Guth, J. Phys. Chem. 46, 826 (1942)

    Article  CAS  Google Scholar 

  29. K. Suzuki, K. Shibata, H. Mizuseki, J. Non Cryst. Solids, 156–158, 58 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Fukuhara, M., Inoue, A., Nishiyama, N. (2008). Rubber-Like Entropy Elasticity of a Glassy Alloy [1]. In: Fujikawa, Y., Nakajima, K., Sakurai, T. (eds) Frontiers in Materials Research. Advances in Materials Research, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77968-1_17

Download citation

Publish with us

Policies and ethics