Skip to main content

Sub-Micron Structuring of LiNbO3 Crystals with Multi-Period and Complex Geometries

  • Chapter
  • 1280 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 91))

Abstract

Lithium niobate (LN) is a ferroelectric material which has attracted a considerable interest in different fields, such as the optical and the laser and communications industry, due to its excellent nonlinear optical, electro-optic, piezoelectric and acousto-optical coefficients. LN is widely used in the laser area, where fabrication of periodically poled materials has achieved high efficiencies in quasi-phased matched nonlinear interactions, but also in the field of microwave communications for surface acoustic wave delay lines. Recently, the possibility to microstructure LN crystals has been attracted great interest for the useful applications foreseen in the fields of optics and optoelectronics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.M. Prokhorov, Yu.S. Kuz’minov, Physics and Chemistry of Crystalline Lithium Niobate (Adam Hilger, Bristol, 1990)

    Google Scholar 

  2. L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, J.W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995)

    Article  ADS  Google Scholar 

  3. A.A. Oliver (ed.), Acoustic Surface Waves. Topics in Applied Physics, vol. 24 (Springer, Berlin, 1978)

    Google Scholar 

  4. B.U. Chen, E. Marom, A. Lee, Appl. Phys. Lett. 31, 263 (1977)

    Article  ADS  Google Scholar 

  5. H.L. Garvin, E. Garmire, S. Somekh, H. Stoll, A. Yariv, Appl. Opt. 12, 455 (1973)

    Article  ADS  Google Scholar 

  6. B.L. Sopori, C.M. Phillips, W.S.C. Chang, Appl. Opt. 19, 790 (1980)

    Article  ADS  Google Scholar 

  7. C.L. Lee, C.L. Lu, Appl. Phys. Lett. 35, 756 (1979)

    Article  ADS  Google Scholar 

  8. K. Nassau, H.J. Levinstein, G.M. Loiacono, Appl. Phys. Lett. 6, 228 (1965)

    Article  ADS  Google Scholar 

  9. N. Niizeki, T. Yamada, H. Toyoda, Jpn. J. Appl. Phys. 6, 318 (1967)

    Article  ADS  Google Scholar 

  10. J. Webjörn, F. Laurell, G. Arvidsson, J. Light. Technol. 7, 1597 (1989)

    Article  ADS  Google Scholar 

  11. J.L. Jackel, R.E. Howard, E.L. Hu, S.P. Lyman, Appl. Phys. Lett. 38, 907 (1981)

    Article  ADS  Google Scholar 

  12. C. Ren, J. Yang, Y. Zheng, L. Chen, G. Chen, S. Tsou, Nucl. Instrum. Methods Phys. Res. B 19, 1018 (1987)

    Article  Google Scholar 

  13. C.I.H. Ashby, P.J. Brannon, Appl. Phys. Lett. 49, 475 (1986)

    Article  ADS  Google Scholar 

  14. K. Christensen, M. Müllenborn, Appl. Phys. Lett. 66, 2772 (1995)

    Article  ADS  Google Scholar 

  15. F. Laurell, J. Webjörn, G. Arvidsson, J. Holmberg, J. Light. Technol. 10, 1606 (1992)

    Article  ADS  Google Scholar 

  16. T.-J. Wang, C.-F. Huang, W.-S. Wang, P.-K. Wei, J. Light. Technol. 22, 1764 (2004)

    Article  ADS  Google Scholar 

  17. T.-L. Ting, L.-Y. Chen, W.-S. Wang, Photonics Technol. Lett. 18, 568 (2006)

    Article  ADS  Google Scholar 

  18. I.E. Barry, G.W. Ross, P.G.R. Smith, R.W. Eason, G. Cook, Mater. Lett. 37, 246 (1998)

    Article  Google Scholar 

  19. C. Restoin, S. Massy, C. Darraud-Taupiac, A. Barthelemy, Opt. Mater. 22, 193 (2003)

    Article  ADS  Google Scholar 

  20. J.G. Scott, A.J. Boyland, S. Mailis, C. Grivas, O. Wagner, S. Lagoutte, R.W. Eason, Appl. Surf. Sci. 230, 138 (2004)

    Article  ADS  Google Scholar 

  21. D.M. Gill, D. Jacobson, C.A. White, C.D.W. Jones, Y. Shi, W.J. Minford, A. Harris, J. Light. Technol. 22, 887 (2004)

    Article  ADS  Google Scholar 

  22. F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, M. Spajer, Opt. Mater. 27, 1421 (2005)

    Article  ADS  Google Scholar 

  23. H. Hu, A.P. Milenin, R.B. Wehrspohn, H. Hermann, W. Sohler, J. Vac. Sci. Technol. A 24, 1012 (2006)

    Article  Google Scholar 

  24. H. Hu, R. Ricken, W. Sohler, R.B. Wehrspohn, Photonics Technol. Lett. 19, 417 (2007)

    Article  ADS  Google Scholar 

  25. S. Grilli, P. Ferraro, P. De Natale, B. Tiribilli, M. Vassalli, Appl. Phys. Lett. 87, 233106 (2005)

    Article  ADS  Google Scholar 

  26. J.L. Jackel, C.E. Rice, J.J. Veselka, Appl. Phys. Lett. 41, 607 (1982)

    Article  ADS  Google Scholar 

  27. J.M.M.M. de Almeida, Opt. Eng. 46, 064601 (2007)

    Article  ADS  Google Scholar 

  28. M. Yamada, N. Nada, M. Saitoh, K. Watanabe, Appl. Phys. Lett. 62, 435 (1993)

    Article  ADS  Google Scholar 

  29. V. Bermúdez, L. Huang, D. Hui, S. Field, E. Diéguez, Appl. Phys. A 70, 591 (2000)

    Article  ADS  Google Scholar 

  30. V. Pruneri, J. Webjörn, P.St.J. Russell, J.R.M. Barr, D.C. Hanna, Opt. Commun. 116, 159 (1995)

    Article  ADS  Google Scholar 

  31. V. Gopalan, Q.X. Jia, T.E. Mitchell, Appl. Phys. Lett. 75, 2482 (1999)

    Article  ADS  Google Scholar 

  32. J.P. Spallas, A.M. Hawryluk, D.R. Kania, J. Vac. Sci. Technol. B 13, 1973 (1995)

    Article  Google Scholar 

  33. M.L. Schattenburg, R.J. Aucoin, R.C. Fleming, J. Vac. Sci. Technol. B 13, 3007 (1995)

    Article  Google Scholar 

  34. P. Ferraro, S. Grilli, Appl. Phys. Lett. 89, 133111 (2006)

    Article  ADS  Google Scholar 

  35. O. Kafri, A. Livuat, Opt. Lett. 4, 314 (1979)

    Article  ADS  Google Scholar 

  36. S. Grilli, P. Ferraro, L. Sansone, M. Paturzo, S. De Nicola, G. Pierattini, P. De Natale, Photonics Technol. Lett. 18, 541 (2006)

    Article  ADS  Google Scholar 

  37. J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Nature 386, 143 (1997)

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grilli, S., Ferraro, P. (2009). Sub-Micron Structuring of LiNbO3 Crystals with Multi-Period and Complex Geometries. In: Ferraro, P., Grilli, S., De Natale, P. (eds) Ferroelectric Crystals for Photonic Applications. Springer Series in Materials Science, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77965-0_3

Download citation

Publish with us

Policies and ethics