Skip to main content

Micro-Structuring and Ferroelectric Domain Engineering of Single Crystal Lithium Niobate

  • Chapter
Ferroelectric Crystals for Photonic Applications

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 91))

Abstract

The ability to microstructure specific materials is always associated with the ability to selectively remove material over small scale-lengths. Localized etching whether it is chemical or physical, wet or dry, parallel or sequential is central to every modern microstructuring method. For example a beam of accelerated ions is scanned on the surface of interest removing material along its trajectory. Alternatively the surface is prepared/treated in a manner that changes its “quality” locally making it more susceptible or more resistive to a particular etching agent. The whole surface is subsequently exposed to the etching agent which can be a uniform accelerated ion beam, a laser beam or an acid. The etching agent preferentially attacks the pre-treated (or the untreated) portion of the surface removing material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.E. Petersen, Proc. IEEE 70, 420–456 (1982)

    Article  ADS  Google Scholar 

  2. W.P. Eaton, J.H. Smith, Smart Mater. Struct. 6, 530–539 (1997)

    Article  ADS  Google Scholar 

  3. T. Frank, J. Micromech. Microeng. 8, 114–118 (1998)

    Article  ADS  Google Scholar 

  4. M. Koch, D. Chatelain, A.G.R. Evans, A. Brunnschweiler, J. Micromech. Microeng. 8, 123–126 (1998)

    Article  ADS  Google Scholar 

  5. M. Yamada, N. Nada, M. Saitoh, K. Watanabe, Appl. Phys. Lett. 62, 435 (1993)

    Article  ADS  Google Scholar 

  6. J. Webjorn, V. Pruneri, St.P.J. Russell, J.R.M. Barr, D.C. Hanna, Electron. Lett. 30, 894 (1994)

    Article  ADS  Google Scholar 

  7. C. Restoin, S. Massy, C. Darraud-Taupiac, A. Barthelemy, Opt. Mater. 22, 193 (2003)

    Article  ADS  Google Scholar 

  8. C. Restoin, C. Darraud-Taupiac, J.L. Decossas, J.C. Vareille, J. Hauden, Mater. Sci. Semicon. Proc. 3, 405–407 (2000)

    Article  Google Scholar 

  9. A.C.G. Nutt, V. Gopalan, M.C. Gupta, Appl. Phys. Lett. 60, 2828 (1992)

    Article  ADS  Google Scholar 

  10. S.Z. Yin, Microwave Opt. Technol. Lett. 22, 396 (1999)

    Article  Google Scholar 

  11. F. Lacour, N. Courjal, M.P. Bernal, A. Sabac, C. Bainier, M. Spajer, Opt. Mater. 27, 1421 (2005)

    Article  ADS  Google Scholar 

  12. H. Hu, A.P. Milenin, R.B. Wehrspohn, H. Hermann, W. Sohler, J. Vac. Sci. Technol. A 24, 1012–1015 (2006)

    Article  Google Scholar 

  13. V. Foglietti, E. Cianci, D. Pezzeta, C. Sibilia, M. Marangoni, R. Osellame, R. Ramponi, Microelectron. Eng. 67–68, 742 (2003)

    Article  Google Scholar 

  14. W.S. Yang, H.Y. Lee, W.K. Kim, D.H. Yoon, Opt. Mater. 27, 1642–1646 (2005)

    Article  ADS  Google Scholar 

  15. H.W. Chong, A. Mitchell, J.P. Hayes, M.W. Austin, Appl. Surf. Sci. 201(1–4), 196–203 (2002)

    Article  ADS  Google Scholar 

  16. L. Gui, B.X. Xu, T.C. Chong, IEEE Photonics Technol. Lett. 16, 1337–1339 (2004)

    Article  ADS  Google Scholar 

  17. S. Mailis, G.W. Ross, L. Reekie, J.A. Abernethy, R.W. Eason, Electron. Lett. 36, 1801–1803 (2000)

    Article  Google Scholar 

  18. K. Nassau, H.J. Levinstein, G.M. Loiacono, J. Phys. Chem. Solids 27, 983 (1966)

    Article  ADS  Google Scholar 

  19. R.S. Weis, T.K. Gaylord, Appl. Phys. A 37, 191–203 (1985)

    Article  ADS  Google Scholar 

  20. N.G.R. Broderick, G.W. Ross, H.L. Offerhaus, D.J. Richardson, D.C. Hanna, Phys. Rev. Lett. 84, 4345 (2000)

    Article  ADS  Google Scholar 

  21. I.E. Barry, G.W. Ross, P.G.R. Smith, R.W. Eason, G. Cook, Mater. Lett. 37, 246 (1998)

    Article  Google Scholar 

  22. C.L. Sones, S. Mailis, W.S. Brocklesby, R.W. Eason, J.R. Owen, J. Mater. Chem. 12, 295 (2002)

    Article  Google Scholar 

  23. D. Xue, K. Kitamura, Ferroelectrics 29, 89–93 (2002) (Letters section)

    Article  Google Scholar 

  24. T.J. Sono, J.G. Scott, C.L. Sones, C.E. Valdivia, S. Mailis, R.W. Eason, J.G. Frey, L. Danos, Phys. Rev. B 74, 205424 (2006)

    Article  ADS  Google Scholar 

  25. N. Niizeki, T. Yamada, H. Toyoda, Jpn. J. Appl. Phys. 6(3), 318–326 (1967)

    Article  ADS  Google Scholar 

  26. I.E. Barry, G.W. Ross, P.G.R. Smith, R.W. Eason, Appl. Phys. Lett. 74, 1487 (1999)

    Article  ADS  Google Scholar 

  27. A.C. Busacca, C.L. Sones, V. Apostolopoulos, R.W. Eason, S. Mailis, Appl. Phys. Lett. 81, 4946 (2002)

    Article  ADS  Google Scholar 

  28. S. Grilli, P. Ferraro, L. Sansone, M. Paturzo, S. De Nicola, G. Plerattini, P. De Natale, IEEE Photonics Technol. Lett. 18, 541–543 (2006)

    Article  ADS  Google Scholar 

  29. K. Mitane, U. Goselr, J. Electron. Mater. 21, 669 (1992)

    Article  ADS  Google Scholar 

  30. F. Gray, K. Hermansson, Appl. Phys. Lett. 71, 3400 (1997)

    Article  ADS  Google Scholar 

  31. K. Ljungberg, A. Soderbarg, Y. Backlund, Appl. Phys. Lett. 78, 1035 (1993)

    Google Scholar 

  32. H. Himi, H. Matsui, S. Fujino, T. Hattori, Jpn. J. Appl. Phys. Part I 33, 6 (1994)

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mailis, S., Sones, C.L., Eason, R.W. (2009). Micro-Structuring and Ferroelectric Domain Engineering of Single Crystal Lithium Niobate. In: Ferraro, P., Grilli, S., De Natale, P. (eds) Ferroelectric Crystals for Photonic Applications. Springer Series in Materials Science, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77965-0_1

Download citation

Publish with us

Policies and ethics