Skip to main content

Solutions to Computational Problems Through Gene Assembly

  • Conference paper
DNA Computing (DNA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4848))

Included in the following conference series:

Abstract

Gene assembly in ciliates is an impressive computational process. Ciliates have a unique way of storing their genetic information in two fundamentally different forms within their two types of nuclei. Micronuclear genes are broken into blocks (called MDSs), with MDSs shuffled and separated by non-coding material; some of the MDSs may even be inverted. During gene assembly, all MDSs are sorted in the correct order to yield the transcription-able macronuclear gene. Based on the intramolecular model for gene assembly, we prove in this paper that gene assembly may be used in principle to solve computational problems. We prove that any given instance of the hamiltonian path problem may be encoded in a suitable way in the form of an ‘artificial’ gene so that gene assembly is successful on that gene-like pattern if and only if the given problem has an affirmative answer.

A. Alhazov (artiom@math.md) and V. Rogojin are on leave of absence from Institute of Mathematics and Computer Science of Academy of Sciences of Moldova, Chisinau MD-2028 Moldova.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 226, 1021–1024 (1994)

    Article  Google Scholar 

  2. Angeleska, A., Jonoska, N., Saito, M., Landweber, L.F.: RNA-Template Guided DNA Assembly. In: Garzon, M., Yan, H. (eds.) Preliminary Proceedings on DNA13 meeting, University of Memphis, Memphis, p. 364 (2007)

    Google Scholar 

  3. Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D.M., Rozenberg, G.: Computation in Living Cells: Gene Assembly in Ciliates. Springer, Heidelberg (2003)

    Google Scholar 

  4. Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D.M., Rozenberg, G.: Formal systems for gene assembly in ciliates. Theoret. Comput. Sci. 292, 199–219 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ehrenfeucht, A., Harju, T., Petre, I., Rozenberg, G.: Characterizing the micronuclear gene patterns in ciliates. Theory of Comput. Syst. 35, 501–519 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ehrenfeucht, A., Petre, I., Prescott, D.M., Rozenberg, G.: String and graph reduction systems for gene assembly in ciliates. Math. Structures Comput. Sci. 12, 113–134 (2001)

    Article  MathSciNet  Google Scholar 

  7. Ehrenfeucht, A., Petre, I., Prescott, D.M., Rozenberg, G.: Circularity and other invariants of gene assembly in ciliates. In: Ito, M., Păun, G., Yu, S. (eds.) Words, semigroups, and transductions, pp. 81–97. World Scientific, Singapore (2001)

    Google Scholar 

  8. Ehrenfeucht, A., Prescott, D.M., Rozenberg, G.: Computational aspects of gene (un)scrambling in ciliates. In: Landweber, L.F., Winfree, E. (eds.) Evolution as Computation, pp. 216–256. Springer, Heidelberg (2001)

    Google Scholar 

  9. Harju, T., Petre, I., Li, C., Rozenberg, G.: Parallelism in gene assembly. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA Computing. LNCS, vol. 3384, pp. 138–148. Springer, Heidelberg (2005)

    Google Scholar 

  10. Harju, T., Petre, I., Rozenberg, G.: Gene assembly in ciliates: Molecular operations. In: Păun, G., Rozenberg, G., Salomaa, A. (eds.) Current Trends in Theoretical Computer Science (2004)

    Google Scholar 

  11. Harju, T., Petre, I., Rozenberg, G.: Gene assembly in ciliates: formal frameworks. In: Păun, G., Rozenberg, G., Salomaa, A. (eds.) Current Trends in Theoretical Computer Science (2004)

    Google Scholar 

  12. Kari, L., Landweber, L.F.: Computational power of gene rearrangement. In: Winfree, E., Gifford, D.K. (eds.) Proceedings of DNA Bases Computers, V. American Mathematical Society, pp. 207–216 (1999)

    Google Scholar 

  13. Landweber, L.F., Kari, L.: The evolution of cellular computing: Nature’s solution to a computational problem. In: Proceedings of the 4th DIMACS Meeting on DNA-Based Computers, Philadelphia, PA, pp. 3–15 (1998)

    Google Scholar 

  14. Landweber, L.F., Kari, L.: Universal molecular computation in ciliates. In: Landweber, L.F., Winfree, E. (eds.) Evolution as Computation, Springer, New York (2002)

    Google Scholar 

  15. Onolt-Ishdorj, T., Petre, I., Rogojin, V.: Computational Power of Intramolecular Gene Assembly. Computability in Europe (submitted 2007)

    Google Scholar 

  16. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  17. Prescott, D.M.: The DNA of ciliated protozoa. Microbiol. Rev. 58(2), 233–267 (1994)

    Google Scholar 

  18. Prescott, D.M., Ehrenfeucht, A., Rozenberg, G.: Molecular operations for DNA processing in hypotrichous ciliates. Europ. J. Protistology 37, 241–260 (2001)

    Article  Google Scholar 

  19. Petre, I.: Invariants of gene assembly in stichotrichous ciliates. IT, Oldenbourg Wissenschftsverlag 3, 161–167 (2006)

    Google Scholar 

  20. Prescott, D.M., Rozenberg, G.: How ciliates manipulate their own DNA – A splendid example of natural computing. Natural Computing 1, 165–183 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Prescott, D.M., Rozenberg, G.: Encrypted genes and their reassembly in ciliates. In: Amos, M. (ed.) Cellular Computing, Oxford University Press, Oxford (2003)

    Google Scholar 

  22. Vijayan, V., Nowacki, M., Zhou, Y., Doak, T., Landweber, L.: Programming a Ciliate Computer: Template-Guided In Vivo DNA Rearrangements in Oxytricha. In: Garzon, M., Yan, H. (eds.) Preliminary Proceedings on DNA13 meeting, University of Memphis, Memphis, p. 172 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Max H. Garzon Hao Yan

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alhazov, A., Petre, I., Rogojin, V. (2008). Solutions to Computational Problems Through Gene Assembly. In: Garzon, M.H., Yan, H. (eds) DNA Computing. DNA 2007. Lecture Notes in Computer Science, vol 4848. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77962-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77962-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77961-2

  • Online ISBN: 978-3-540-77962-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics