Skip to main content

Towards a Robust Biocomputing Solution of Intractable Problems

  • Conference paper
DNA Computing (DNA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4848))

Included in the following conference series:

  • 656 Accesses

Abstract

An incremental approach to construction of biomolecular algorithms solving intractable problems is presented. The core idea is to build gradually the space of candidate solutions and remove invalid solutions as soon as possible. We demonstrate two examples of this strategy: a P system with replication and inhibitors for solving the Maximum Clique Problem for a graph, and an incremental DNA algorithm for the same problem inspired by the membrane solution. The DNA implementation is based on the parallel filtering DNA model featuring error-resistance of the employed operations. The algorithm is compared with two standard papers that addressed the same problem and its DNA implementation in the past. The comparison is carried out on the basis of a series of computational and physical parameters. The incremental algorithm features a dramatically lower cost in terms of time, the number and size of DNA strands, together with a high error-resistance. A probabilistic analysis shows that physical parameters (volume of the DNA pool, concentration of the solution-encoding strands) and error-resistance of the algorithm should allow to process in vitro instances of graphs with hundreds to thousands of vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  2. Amos, M., Gibbons, A., Hodgson, D.: Error-resistant implementation of DNA computations. In:  Proceedings of the Second Annual Meeting on DNA Based Computers. Princeton University, pp. 87–101 (1996)

    Google Scholar 

  3. Amos, M.: Theoretical and experimental DNA computation. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  4. Bach, E., Condon, A., Glaser, E., Tanguay, C.: DNA models and algorithms for NP-complete problems. In: Proceedings of the 11th IEEE Conference on Computational Complexity, pp. 290–300. IEEE Computer Society Press, Los Alamitos (1996)

    Google Scholar 

  5. Bäck, T., Kok, J.N., Rozenberg, G.: Evolutionary computation as a paradigm for DNA-based computing. In: Landweber, L., Winfree, E., Lipton, R., Freeland, S. (eds.) Proceedings: DIMACS Workshop on Evolution as Computation, Princeton, NJ, pp. 67–88 (1999)

    Google Scholar 

  6. Baum, E.B., Boneh, D.: Running dynamic programming algorithms on a DNA computer. In: Proceedings of the Second Annual Meeting on DNA Based Computers, Princeton University, pp. 141–147 (1996)

    Google Scholar 

  7. Bottoni, P., Martin-Vide, C., Păun, G., Rozenberg, G.: Membrane systems with promoters/inhibitors. Acta Informatica 38, 695–720 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chiu, D.T., Pezzoli, E., Wu, H., Stroock, A.D., Whitesides, G.M.: Using three-dimensional microfluidic networks for solving computationally hard problems. In: Proceedings of the National Academy of Sciences of USA, vol. 98, pp. 2961–2966 (2001)

    Google Scholar 

  9. Cukras, A.R., Faulhammer, D., Lipton, R.J., Landweber, L.F.: Chess games: a model for RNA based computation. Biosystems 52, 35–45 (1999)

    Article  Google Scholar 

  10. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics. Addison-Wesley, Reading (1992)

    Google Scholar 

  11. Head, T., Yamamura, M., Gal, S.: Aqueous computing: Writing on molecules. In: Proceedings of Congress on Evolutionary Computation, IEEE Service Center, Piscataway, pp. 1006–1010 (1999)

    Google Scholar 

  12. Ionescu, M., Sburlan, D.: On P systems with promoters/inhibitors. Journal of Universal Computer Science 10, 581–599 (2004)

    MathSciNet  Google Scholar 

  13. Janson, S., Luczak, T., Rucinski, A.: Random Graphs. John Wiley & Sons, Chichester (2000)

    MATH  Google Scholar 

  14. Krishna, S.N., Rama, R.: P Systems with replicated rewriting. Journal of Automata, Languages and Combinatorics 6, 345–350 (2001)

    MATH  MathSciNet  Google Scholar 

  15. Manca, V., Zandron, C.: A clause string DNA algorithm for SAT. In: Jonoska, N., Seeman, N.C. (eds.) DNA Computing. LNCS, vol. 2340, pp. 172–181. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Matula, D.W.: On the complete subgraphs of a random graph. In: Bose, R.C., et al. (eds.) Proc. 2nd Chapel Hill Conf. Combinatorial Math. and its Applications, pp. 356–369. Univ. North Carolina, Chapel Hill (1970)

    Google Scholar 

  17. McCaskill, J.S.: Optically programming DNA computing in microflow reactors. Biosystems 59, 125–138 (2001)

    Article  Google Scholar 

  18. Ogihara, M.: Breadth first search 3-SAT algorithms for DNA computers. Technical Report 629, University of Rochester, NY (1996)

    Google Scholar 

  19. Ouyang, Q., Kaplan, P.D., Liu, S., Libchaber, A.: DNA solution of the maximal clique problem. Science 278, 446–449 (1997)

    Article  Google Scholar 

  20. Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61, 108–143 (2000)

    Article  MathSciNet  Google Scholar 

  21. Păun, G.: Membrane Computing. In: An Introduction, Springer, Heidelberg (2002)

    Google Scholar 

  22. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing. In: New Computing Paradigms, Springer, Heidelberg (1998)

    Google Scholar 

  23. Ravinderjit, B., Chelyapov, N., Johnson, C., Rothemund, P., Adleman, L.: Solution of a 20 variable 3-SAT problem on a molecular computer. Science 296, 499–502 (2002)

    Article  Google Scholar 

  24. Zimmermann, K.H.: Efficient DNA sticker algorithms for NP-complete graph problems. Computer Physics Communications 144, 297–309 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Max H. Garzon Hao Yan

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

García-Arnau, M., Manrique, D., Rodríguez-Patón, A., Sosík, P. (2008). Towards a Robust Biocomputing Solution of Intractable Problems. In: Garzon, M.H., Yan, H. (eds) DNA Computing. DNA 2007. Lecture Notes in Computer Science, vol 4848. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77962-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77962-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77961-2

  • Online ISBN: 978-3-540-77962-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics